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ABSTRACT

This paper proposes an improved time-frequency trajectory exci-
tation (TFTE) modeling method for a statistical parametric speech
synthesis system. The proposed approach overcomes the dimen-
sional variation problem of the training process caused by the inher-
ent nature of the pitch-dependent analysis paradigm. By reducing
the redundancies of the parameters using predicted average block
coefficients (PABC), the proposed algorithm efficiently models ex-
citation, even if its dimension is varied. Objective and subjective
test results verify that the proposed algorithm provides not only ro-
bustness to the training process but also naturalness to the synthe-
sized speech.

Index Terms— Statistical parametric speech synthesis, time-
frequency trajectory excitation (TFTE), slowly evolving waveform
(SEW), predicted average block coefficient (PABC)

1. INTRODUCTION

HMM-based statistical parametric speech synthesis systems have
been successfully deployed in many applications because of their
reasonable performance, even with a small database. However,
the perceptual quality of synthesized speech is still unsatisfactory,
mainly due to limitations in vocoding, the accuracies of acoustic
models, and over-smoothed output [1]. Although a deep neural net-
work (DNN) was introduced to replace HMM to enhance the accu-
racies of acoustic models and to relieve the over-smoothing prob-
lem [2-5], it is still unclear to understand the impact of vocoding
techniques when they are combined with statistical models. In other
words, how to design speech analysis/synthesis algorithm and how
to parameterize the speech parameters suitably for the HMM/DNN-
based training process need to be considered carefully.

The synthesized quality of a pulse or noise (PoN) model-based
TTS system is buzzy and unnatural because the excitation signal is
only modeled by either pulse or noise components [6]. To reduce
the buzziness problem, various ways of mixed excitation models
have been adopted [7][8]. By separating the whole frequency band
into several fixed sub-bands, the excitation signal of each sub-band
is represented by either PoN or band aperiodicities (BAP) [9][10].
However, it cannot fully represent the time-varying periodicity of
various types of phonetic information, which makes the perceptual
quality still buzzy or noisy.

To improve the naturalness of synthesized speech, a pitch-
dependent time-frequency trajectory excitation (TFTE)-based TTS
system was proposed [11][12]. The TFTE has an advantage in that
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it can represent the time-varying characteristics of phonetic infor-
mation by decomposing it into slowly evolving waveform (SEW)
and rapidly evolving waveform (REW) [13]. The SEW, the most
important parameter in the TFTE-based scheme, represents the
slowly varying components of excitation, such as voiced portion.
On the other hand, the REW represents the remaining noisy com-
ponents. Although utilizing the SEW/REW decomposition makes
it more efficient to suitably estimate the periodicity in a unit of an
individual frequency bin, it still has a problem of dimensional vari-
ation in the training process. Note that the number of parameters
to be modeled in each pitch epoch is varied because of the pitch-
dependent analysis paradigm. To solve the problem, only a fixed
number of SEW magnitudes, typically in a low-frequency band, as
well as the polynomial coefficients of the REW magnitude are used
for the training process [12]. In the synthesis step, the remaining
SEW magnitude for a high-frequency band is reconstructed by
subtracting the REW magnitude from the normalized excitation.
Therefore, the TTS system cannot fully utilize the maximum ad-
vantages that could be achieved by introducing the SEW/REW
decomposition.

By adopting the predicted average block coefficient (PABC)
technique [14], this paper proposes an improved parameterization
method, which can appropriately regenerate the TFTE regardless of
the time-varying feature dimensions. To make the process of train-
ing the TFTE parameters unaffected by the dimensionality problem,
the average component of the SEW magnitude is first predicted by
the SEW from the previous frame. As the temporal correlation of
the SEW is very high, the redundancy of the SEW magnitude can
be significantly reduced. The PABC-SEW is then obtained by sub-
dividing the predicted average (PA) magnitude into a fixed number
of frequency bands, and performing the discrete cosine transform
(DCT) in each PA sub-band. As the DCT has good decorrelation
and energy compactness properties, most information related to the
PA magnitude is concentrated within the first few PABCs. Further-
more, the analysis of the remaining PABCs shows that they follow
the normal distribution, which can be easily modeled by Gaussian
random variables. As a result, training can be successfully accom-
plished by the fixed number of PABC-SEWs and REWs. Experi-
mental results also verify that the proposed algorithm provides both
robustness to the training process and naturalness to synthesized
speech compared to the conventional algorithm.

This paper is organized as follows. Section 2 describes the
TFTE algorithm with the conventional modeling method. Section
3 describes the proposed PABC-TFTE modeling method and veri-
fies its advantages. Section 4 presents the experiments and results
obtained by performing objective and subjective tests, and the con-
clusions are presented in the final section.
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2. SPEECH SYNTHESIS USING TIME-FREQUENCY
TRAJECTORY EXCITATION

2.1. Time-Frequency Trajectory Excitation

TFTE uses a time-frequency surface to represent the voicing char-
acteristics of an evolving excitation waveform. It extracts the peri-
odicity of each individual frequency bin by decomposing a single
pitch-based excitation signal into slowly and rapidly varying com-
ponents.

Let u(n, φ) denote a periodic function with φ extracted at the
n-th frame, then the TFTE signal can be represented as follows:

u(n, φ) =

P (n)/2∑
k=1

[Ak(n) cos(kφ) +Bk(n) sin(kφ)], (1)

where a phase φ is defined as φ(m) = 2πm/P (n) with a pitch pe-
riod P (n), and Ak(n) and Bk(n) are the k-th discrete time Fourier
series (DTFS) coefficients of the excitation signal [13].

In every frequency bin, the periodic signal u(n, φ) is further
decomposed into SEW and REW by applying a low-pass filter to
the time-domain axis. The SEW component is obtained as follows:

uSEW (n, φ) =

M∑
m=1

h(m)u(n−m,φ), (2)

where h(m) is the M -th order low-pass filter. Using the orthog-
onality, the REW is obtained by subtracting uSEW (n, φ) from
u(n, φ) as:

uREW (n, φ) = u(n, φ) − uSEW (n, φ). (3)

Therefore, it can be concluded that the SEW and REW represent
the periodic and remaining noisy components of TFTE in each fre-
quency bin, respectively.

2.2. TFTE Modeling for Speech Synthesis

To apply the TFTE model to the statistical parametric speech syn-
thesis system, the SEW/REW coefficients should be adjusted to
have fixed dimensions. Note again that the number of SEW/REW
coefficients vary depending on the pitch period.

In the previous work given in [12], an approach that had been
utilized in a low bit-rate speech coding technique was introduced.
In the analysis step, only a small number of the low-frequency SEW
magnitudes were used for representing voiced components. The
REW magnitude was parameterized by the coefficients of the Leg-
endre orthonormal polynomials because it was well-known that a
power contour model was good enough to represent noisy compo-
nents in perceptual aspects [13]. In the synthesis step, the polyno-
mial coefficients were transformed into the REW magnitude. The
high-frequency SEW magnitudes were reconstructed by subtract-
ing the REW magnitude from one, and they were then combined
to the modified low-frequency SEW magnitudes to recover the full
frequency band information of SEW. Fig. 1-(b) shows an example
of the reconstructed SEW magnitude using the above approach.

As we can guess from the figure, the synthesized quality of the
method is unsatisfactory. It often creates buzzy sound, primarily
because of the inaccurate periodicity. As the spectral trajectory in

(a)

(b)

(c)

Fig. 1. SEW magnitude: original (a), as well as, reconstructed
by the conventional (b) and proposed (c) algorithms.

high-frequency region is too smooth, the synthesized speech is of-
ten unintelligible. It is more noticeable if the contents require a
large amount of high-frequency components. Therefore, an effi-
cient modeling algorithm that can appropriately represent the SEW
trajectory should be designed to improve the naturalness of synthe-
sized speech.

3. IMPROVED TFTE MODELING FOR A STATISTICAL
PARAMETRIC SPEECH SYNTHESIS SYSTEM

This section describes an improved TFTE modeling technique that
is appropriate for the statistical parametric speech synthesis system.
The advantage of the proposed algorithm is verified by comparing
the trainability of the TFTE parameters to the conventional algo-
rithm.

3.1. PABC-TFTE Modeling for Speech Synthesis

To improve the efficiency of the TFTE training process, it is very
important to reduce the redundancy of the TFTE parameters. As the
SEW magnitude is highly correlated with the adjacent SEW frames,
the redundancy of the SEW magnitude can be significantly reduced
by predicting the average magnitude component from the previous
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Fig. 2. Normalized histogram of the remaining PABCs in the
2-nd (left) and the 18-th (right) PA sub-block.

frame. The PA at the φ-th frequency bin is obtained as follows:

uPA(n, φ) = uSEW (n, φ) − ures(n− 1, φ), (4)

ures(n− 1, φ) = ûSEW (n− 1, φ) − uave(n− 1), (5)

where ûSEW (n− 1, φ) represents an interpolated SEW magnitude
at the φ-th frequency bin in the previous frame, and uave(n − 1)
is the average SEW magnitude of the previous frame. As the dif-
ference between uSEW (n, φ) and ures(n − 1, φ) becomes an av-
erage magnitude component of the current frame, it represents the
smoothed version of the SEW magnitude. This process can be help-
ful to improve the efficiency of applying DCT, as discussed below.

The PA magnitude is then divided into K number of frequency
sub-blocks: ck,1...

ck,Jk


T

=

 uPA(n, Jk−1 + 1)
...

uPA(n, Jk−1 + Jk)


T

, 1 ≤ k ≤ K, (6)

where ck,j denotes the j-th PA magnitude of the k-th sub-block, and
Jk denotes a length of the k-th sub-block that satisfies the following
condition:

K∑
k=1

Jk = P (n)/2, (7)

where P (n)/2 is the length of the SEW. Each PA sub-block is then
transformed with the DCT:

Ck,m = 1
Jk

Jk∑
j=1

ck,j cos
(
π
Jk

(j − 0.5) (m− 1)
)
,

1 ≤ m ≤ Jk

(8)

where Ck,m is defined as the PR block coefficient (PABC), which
represents the m-th DCT coefficient of the k-th sub-block.

As the DCT has good decorrelation and energy compactness
properties [14], most information is concentrated within the first
few PABCs. On the other hand, the remaining coefficients that have
normal distributions are less important. Fig. 2 depicts examples of
the distribution of the remaining PABCs. Therefore, the coefficients
can be easily modeled by a single Gaussian. In summary, the full
frequency band SEW magnitude can be trained with only several
PABCs, but the remaining coefficients are generated by Gaussian
random variables in the synthesis step. Fig. 1-(c) is an example
of the reconstructed SEW magnitude that only uses the first coef-
ficient of each PA sub-block and the generated random variables.
Compared with the conventional approach (b), it is clear that the
proposed algorithm recovers the SEW magnitude very well.

Fig. 3. Log-SEW distance before/after training.

3.2. Advantages of PABC-TFTE

This section describes the advantages of utilizing the PABC-TFTE
for a statistical parametric speech synthesis system. To evaluate
the effectiveness of the proposed algorithm in comparison with the
conventional one, we measure the log-SEW distance between the
original and reconstructed SEW magnitudes. The log-SEW dis-
tance is defined as:

DSEW =
1

N

N∑
n=1


√√√√ 1

Mn

Mn∑
k=1

(lori(n, k) − lsyn(n, k))2

, (9)

where N denotes the number of frames and Mn represents the
length of the SEW at the n-th frame; lori(n, k) and lsyn(n, k) rep-
resent the original and reconstructed log-SEW magnitudes (dB) in
each frame and frequency bin, respectively. Note that the dynamic
time warping technique is used to compensate for the durational
mismatch between the original and reconstructed signals [15].

Fig. 3 represents the log-SEW distance depending on the SEW
dimension before and after training. The results of both cases verify
the effectiveness of the proposed algorithm in three ways. First, ap-
plying the prediction to the SEW magnitude has a merit in the mod-
eling aspect, which reduces the reconstruction error of the SEW.
Second, the results show that the reconstructed SEW of the pro-
posed algorithm has much smaller error than that of the conven-
tional one. Furthermore, the error significantly decreases in the
proposed case when the SEW dimension becomes higher. Last, the
amount of error increments before and after training is large in the
conventional case due to the disadvantage of trainability, which is
discussed in section 4.2. From the results, we confirm that the pro-
posed PABC-TFTE not only reduces the error during reconstructing
the excitation signal, but it also provides robustness to the training
for excitation parameters.

4. EXPERIMENTS

4.1. Experimental Setups

To evaluate the effectiveness of the proposed algorithm, we con-
structed a context-dependent HMM-based Korean TTS system
[16]. In total, 2,950 utterances recorded by Korean male speaker
were used for training. The speech signals were sampled at 16
kHz, and each sample was quantized by 16 bits. A grapheme-to-
phoneme (G2P) converter was also applied by the Korean standard
pronunciation grammar and the context information-labeling pro-
gram. More setup details are given in [12]. In the objective and
subjective tests, twenty utterances not included in the training sets
were used.
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Fig. 4. Block diagram of the TTS system using TFTE.

Fig. 4 depicts a block diagram of the whole system. In the
analysis step, the frame length is set to 20ms, and the spectral and
excitation parameters are extracted every 5 ms. The 24-dimension
line spectral frequencies (LSFs) are extracted for the spectral pa-
rameter. On the other hand, the 18-dimension PABC-SEWs and
4-dimension REW polynomial coefficients are extracted for the ex-
citation parameters. The fundamental frequency (F0) and energy
are also extracted for the HMM training. Table 1 summarizes the
dimensions of each parameter. In the synthesis step, all parame-
ters are generated by the context-dependent HMMs. The generated
PABC-SEWs compose the SEW magnitude with Gaussian random
variables. On the other hand, the REW magnitude is recovered by
the generated polynomial coefficients. The phase extracted from
speech is used for the SEW phase; on the contrary, the REW phase
is randomly selected. The TFTE is then reconstructed from the
SEW and REW with its pitch period. Finally, the single pitch-based
speech signal is synthesized by the generated LSFs and TFTE.

4.2. Objective Test Result

To evaluate performance quantitatively, we measured the trainabil-
ity of the proposed PABC-TFTE compared to the conventional one.
It is defined by the normalized mean square error (NMSE) between
the excitation parameters obtained from the original speech and
those generated from the trained HMMs:

NMSE =
1

N

N∑
n=1

√√√√√√√√
K∑
k=1

(xori(n, k) − xgen(n, k))2

K∑
k=1

(xori(n, k))2
, (10)

where N and K denote the number of frames and the dimensions
of the parameter, respectively; xori(n, k) and xgen(n, k) denote
the excitation parameters extracted from the original speech and
generated by the trained HMMs, respectively.

Fig. 5 represents the average NMSE with a 95% confidence in-
terval for each excitation parameter. The average NMSE of the pro-
posed algorithm is much smaller than that of the conventional one.

Table 1. Dimension of each speech analysis/synthesis
method for HMM training.

STRAIGHT Conv. Prop.
LSF 24+∆+∆∆ 24+∆+∆∆ 24+∆+∆∆

Excitation 5+∆+∆∆ 22+∆+∆∆ 22+∆+∆∆

F0 1+∆+∆∆ 1+∆+∆∆ 1+∆+∆∆

Energy 1+∆+∆∆ 1+∆+∆∆ 1+∆+∆∆

Fig. 5. NMSE of excitation parameter generated from
context-dependent HMMs.

Fig. 6. Results of preference tests.

From the result, it is clear that the PABC-TFTE has an advantage
over the conventional one while training the parameters with the
HMMs. Furthermore, the large confidence interval of the conven-
tional algorithm implies that the reconstructed excitation contains
many frames with large errors, which results in the degradation of
naturalness or inconsistent results.

4.3. Subjective Test Result

The perceptual quality of the proposed algorithm is also evalu-
ated by an A/B preference listening test. The proposed PABC-
TFTE-based system is compared to the conventional TFTE-based
and STRAIGHT-based systems. Note that STRAIGHT is known
as the state-of-the-art speech analysis/synthesis algorithm in the re-
cent study of HMM-based TTS systems [8]. In the test, twelve
experienced listeners were asked to make a quality judgment in
an acoustically isolated room with Sennheiser HD650 headphones.
The preference test results are shown in Fig. 6. The test results ver-
ify that the perceptual quality of the proposed algorithm is much
better than that of the conventional one.

5. CONCLUSION

Improved TFTE modeling for a statistical parametric speech syn-
thesis has been proposed. To overcome the drawbacks of the vocod-
ing techniques of the conventional approaches, we adopt the PABC-
based parameterization method of conventional TFTE modeling.
The proposed PABC-TFTE significantly reduces the redundancy of
the excitation parameters; thus, the excitation signal can be regen-
erated with several coefficients of the PABC-SEW and REW. As
most of the remaining PABC-SEWs follow the normal distribution,
they are easily modeled by a single Gaussian. As a result, training
can be successfully accomplished regardless of the time-varying di-
mensions of the parameters.
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