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Abstract

This paper proposes a deep neural network (DNN)-based sta-
tistical parametric speech synthesis system using an improved
time-frequency trajectory excitation (ITFTE) model. The
ITFTE model, which efficiently reduces the parametric redun-
dancy of a TFTE model, improved the perceptual quality of the
vocoding process and the estimation accuracy of the training
process. However, there remain problems related to training
ITFTE parameters in a hidden Markov model (HMM) frame-
work, such as inefficiency of representing cross-dimensional
correlations between ITFTE parameters, over-smoothed outputs
caused by statistical averaging, and an over-fitted model due
to a decision tree-based state clustering paradigm. To allevi-
ate these limitations, a centralized DNN replaces the decision
trees of the HMM training process. Analysis of trainability con-
firms that the DNN training process improves the model accu-
racy, which results in improved perceptual quality of synthe-
sized speech. Objective and subjective test results also verify
that the proposed system performs better than the conventional
HMM-based system.

Index Terms: Statistical parametric speech synthesis system,
deep neural network (DNN), time-frequency trajectory excita-
tion (TFTE)

1. Introduction

In statistical parametric speech synthesis systems, an efficient
vocoding technique is needed to generate the natural qualities of
synthesized speech. To reduce the buzziness of the conventional
pulse-or-noise (PoN) model [1], various approaches have been
adopted to accurately model the excitation signal. By dividing
the whole frequency band into several fixed sub-bands [2, 3],
the excitation signal of each sub-band was represented by ei-
ther PoN or band aperiodicities (BAPs) [4,5]. The quality of
synthesized speech was significantly improved, as mixed exci-
tation is a more generalized representation than the PoN model.
However, its perceptual quality was still buzzy and unnatural
because fixing the boundary of each frequency band could not
fully represent the time-varying periodicity of various types of
phonetic information.

To alleviate the aforementioned limitations, a time-
frequency trajectory excitation (TFTE)-based speech synthesis
system was proposed [6,7]. By decomposing pitch-dependent
excitation into a slowly evolving waveform (SEW) and rapidly
evolving waveform (REW) [8], the TFTE extracts the voicing
ratio of an excitation signal in every frequency bin.

Although the TFTE-based vocoding technique provided
high-quality synthesized speech, the full merits of SEW/REW
decomposition could not be utilized in the model training pro-
cess because its parametric dimension varies depending on the
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length of the pitch interval. In our previous work [9], we
proposed an improved TFTE (ITFTE) model for the hidden
Markov model (HMM)-based speech synthesis system, which
overcame the conventional problem of time-varying feature di-
mensions. By using the characteristic of time-frequency corre-
lation in SEW magnitude, the whole frequency band of SEW
could be represented only by several fixed number of discrete
cosine transform (DCT) coefficients. These coefficients were
used in the HMM training process; on the other hand, the re-
maining coefficients were stochastically generated by Gaussian
random variables. Consequently, the training process avoided
problems associated with dimensional variation.

In this paper, to further improve the whole framework, we
propose a deep neural network (DNN)-based statistical train-
ing process using the ITFTE model. Since SEW and REW
represent a voicing ratio of phonetic information on the time-
frequency surface, it is very important to accurately model the
dynamic nature of evolving characteristics during the training
process. However, there are several limitations on training
ITFTE parameters with HMMs. Firstly, HMMs cannot fully
model cross-dimensional correlations between ITFTE parame-
ters because each state is modeled by a single Gaussian, diago-
nal covariance output distribution. Secondly, a statistical aver-
aging process embedded in the HMM training process creates
an over-smoothing problem, which results in the loss of time-
varying characteristics of ITFTE parameters. Furthermore, hav-
ing prohibitively large tree and separating training data can lead
to an over-fitting problem [10]. As a result, the detailed dy-
namic characteristics of ITFTE parameters are lost during the
training process, thereby degrading the quality of synthesized
speech.

To address these limitations, a deep neural network (DNN)
architecture is used to build a non-linear function that maps
contextual information to corresponding ITFTE parameters. It
is well known that the DNN structure has advantages such as:
the ability to represent complicated functions of features com-
pactly; a centralized network that can model all training data
without data fragmentation; a deep-layered and hierarchical
structure that can identify highly non-linear relationships be-
tween input and output features [10-12]. By replacing conven-
tional decision tree-clustered context-dependent HMMs with a
DNN architecture, the proposed system improves the accuracy
of training ITFTE parameters. The trainability of the proposed
system is compared in detail with the conventional HMM-based
approach. The findings confirm that the proposed system not
only reduces estimation errors during training, but also provides
more natural quality to the synthesized speech. Experimental
results also verify that the proposed system achieves superior
objective and subjective speech quality to that of the conven-
tional method.
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2. Speech Synthesis Using Time-Frequency
Trajectory Excitation

2.1. Time-frequency trajectory excitation

TFTE exploits a time-frequency surface to represent the voic-
ing characteristics of an excitation signal. Let u(n, ¢) denote
a periodic function with ¢ extracted at the n-th frame, then the
TFTE signal can be represented as follows:

P(n)/2

> [Ax(n) cos(ke) + B (n)sin(kg)],

k=1

u(n, @) = e))

where a phase ¢ is defined as ¢(m) = 27m/P(n) with a pitch
period P(n), and Ax(n) and By (n) denote the k-th discrete-
time Fourier series coefficients of the excitation signal [8].

To extract the voicing ratio of each individual frequency
bin, the periodic signal u(n, ¢) is further decomposed into SEW
and REW by applying a low-pass filter to the time-domain axis.
The SEW component is obtained as follows:

M

usew (n, ¢) = Z h(m)u(n —m, ¢),

m=1

@

where h(m) is the M-th order low-pass filter. Using the orthog-
onality, the REW is obtained by subtracting usgw (n, ¢) from

u(n, @) as:

urew (n, ¢) = u(n, ¢) — usew (n, ¢).

3

The SEW and REW therefore represent the periodic and re-
maining noisy components of TFTE in each frequency bin, re-
spectively.

2.2. ITFTE modeling for statistical parametric speech syn-
thesis system

The TFTE parameters should be appropriately adjusted before
being used for training. Note that the number of parameters
to be modeled in each pitch epoch varies because of the pitch-
dependent analysis paradigm.

The periodic component, SEW, can be efficiently modeled
by a fixed-number of DCT coefficients with stochastically gen-
erated random variables. The SEW magnitude is first divided
into K number of frequency sub-blocks,

uspw(n, Jk—1 + 1) r

= : L 1<k<K,

usew (n, Juk—1 + Ji)

Ck,1
)
Ck,Jy,

where ¢, ; denotes the j-th SEW magnitude of the k-th sub-
block, and Jj, denotes a length of the k-th sub-block that satis-
fies the following condition:

K
> Jk =P(n)/2, Q)
k=1

where P(n)/2 is the length of the SEW. When dividing the
whole frequency band into sub-blocks, logarithm-scale (e.g.
mel-scale) division is recommended. Note that high resolu-
tion of low-frequency regions improves the perceived quality

of synthesized speech, compared to that of equally divided sub-
blocks. Each SEW sub-block is then transformed with the DCT:

L ;
Clom = 7 ]; Ck,j COS (,—k (j —0.5)(m — 1))7 (6)
1<m< Ji
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Figure 1: A framework of DNN-based speech synthesis system
using the ITFTE model.

where Cy ., represents the m-th DCT coefficient of the k-th
sub-block. As the DCT has good decorrelation and energy
compactness properties [13], most sub-block information of the
SEW magnitude is concentrated within the first few coefficients.
The remaining coefficients can be modeled by a Gaussian mix-
ture model (GMM), since they follow a normal distribution [9].
As aresult, the entire frequency band information of SEW mag-
nitude can be trained with only several fixed number of DCT
sub-block coefficients, while the remaining coefficients are gen-
erated by Gaussian random variables in the synthesis step.

The noisy component, REW, is modeled by a power contour
estimation method because its perceptual quality is not much
different [8]. Typically, a fixed number of Legendre orthonor-
mal polynomial coefficients are used to parameterize the REW
components.

3. DNN-Based Speech Synthesis System
Using ITFTE Model

This section describes a DNN-based speech synthesis sys-
tem using the ITFTE modeling technique. In the conven-
tional HMM-based speech synthesis system, acoustic parame-
ters are clustered by decision trees and trained by corresponding
HMMs. In contrast, the proposed system replaces the thousands
of GMM leaf nodes of decision trees with a centralized DNN
that is subsequently trained to construct a mapping function
from the contextual information to the corresponding acoustic
parameters. To verify the advantages of the proposed DNN-
based system, we compare the trainability of the ITFTE param-
eters to that of the conventional HMM-based system.

3.1. Speech synthesis system based on a deep architecture

Figure 1 illustrates a framework of the DNN-based speech syn-
thesis system. In the training step, after analyzing the contextual
information of input texts, they are converted to a sequence of
input features. The input features include binary features (e.g.
the previous, current, next phoneme identity, and the position
of the current phoneme in the current syllable) and numerical
features (e.g. the number of phonemes/syllables/words in the
current syllable/word/utterance, the position of the current syl-
lable/word in the current word/utterance, and the durations of
current phoneme). The output features contain acoustic param-



eters (e.g. line spectral frequencies, fundamental frequency, en-
ergy, and parameterized SEW and REW coefficients) with their
time dynamics [14]. The weights of DNN are then trained to
minimize the mean square error between target and estimated
outputs with regard to given inputs.

In the test step, the contextual information is first converted
to input features, and then the output features are estimated by
the trained DNN and the input features. By setting the estimated
output feature vector as a mean vector and pre-computed global
variances of output feature vectors, continuous trajectories of
the speech parameters can be generated by means of a speech
parameter generation algorithm [15]. Finally, the ITFTE syn-
thesis module synthesizes a speech waveform with the gener-
ated parameters.

3.2. Analysis of the trainability of DNN-based speech syn-
thesis system using ITFTE model

This section describes the advantages of utilizing the ITFTE
model for the DNN-based speech synthesis system. To evaluate
the effectiveness of proposed system compared to the conven-
tional HMM-based method, the normalized root mean square
error (NMSE) is measured. The NMSE is defined as the nor-
malized error between the original and generated excitation pa-
rameter:

(@ori(n, k) = xgen(n, k))*
E ,
k; (wori(n, k))?

M=

1L |4
NMSE:NZ

n=1

where N and K denote the number of frames and the dimen-
sions of the parameter, respectively; zor;(n, k) and Tgen (n, k)
denote excitation parameters extracted from the original speech
and those generated by the trained HMM/DNN, respectively.

Figure 2 represents the mean NMSE with a 95% confidence
interval for each system, depending on the total number of pa-
rameters. In the DNN-based system, the model size is con-
trolled by adjusting the number of layers (#L) and the number
of units (#U). In the HMM-based method, on the other hand,
model size is controlled by changing a scale factor of the min-
imum description length (MDL) criteria [16]. The duration in
both system is modeled by HMMs and the dynamic time warp-
ing technique is used to compensate for the durational mismatch
between the original and generated signals [17]. More setup de-
tails are shown in section 4.1.

The results represent the effectiveness of each system in
several ways. Firstly, the average NMSE of the HMM-based
system is large compared to that of the DNN-based one. Fur-
thermore, the parameterized REW contains much larger estima-
tion error than the parameterized SEW, since the dynamically
varying characteristics of REW are over-smoothed by statisti-
cal averaging as part of the HMM training process. Secondly,
the wider confidence interval of the HMM-based system im-
plies that the excitation signal contains many frames with large
errors, which would be expected to degrade naturalness or pro-
duce inconsistent results in the synthesis step. On the contrary,
the proposed DNN-based system reduces estimation error in the
training process. It is therefore expected to provide more natu-
ral quality of synthesized speech than the conventional HMM-
based system, of which results are confirmed in the next section.
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Figure 2: NMSE of excitation parameters generated from
HMM-based (conv.) and DNN-based (prop.) system: (a) SEW
and (b) REW coefficients

4. Experiments
4.1. Experimental setup

Phonetically and prosodically balanced speech data were used
for training the HMM-based and DNN-based speech synthesis
systems. In total, 2,700 utterances (around 3.5 hours) were used
for training, and 100 utterances were used for validation (only
for the DNN-based system). Extra 100 utterances not included
in the training and validation were used for evaluation. The cor-
pus was recorded by a male professional speaker. The speech
signals were sampled at 16 kHz, and each sample was quan-
tized by 16 bits. A grapheme-to-phoneme (G2P) converter was
developed by following rules of the Korean standard pronunci-
ation grammar and the context information-labeling program.
In the analysis step, the frame length is set to 20 ms, and the
spectral and excitation parameters are extracted every 5 ms. The
24-dimensional line spectral frequencies (LSFs) are extracted
for the spectral parameter, whereas 18-dimensional SEW DCT
sub-block coefficients and 4-dimensional REW polynomial co-
efficients are extracted for the excitation parameters. Logarith-
mic fundamental frequency (log-FO) and energy are also ex-
tracted for training the HMM/DNN. Table 1 summarizes the
dimensions of each parameter. In the synthesis step, all param-
eters are generated by a speech parameter generation algorithm.
The generated SEW DCT sub-block coefficients reconstruct the
SEW magnitude with Gaussian random variables, whereas the
REW magnitude is reconstructed by the generated polynomial
coefficients. The TFTE is then reconstructed from the SEW and



Table 1: Dimension of each speech analysis/synthesis method
for DNN training.

| STRAIGHT [ ITFTE
LSF 24+A+AA 24+A+AA
Excitation 22+ A+AA 224+ A+AA
Log-FO 1+A+AA I+A+AA
Energy I+A+AA I+A+AA
V/Uv 1 None

REW with its pitch period. The SEW phase is extracted from a
recorded speech, whereas the REW phase is randomly selected.
Finally, the single pitch-based speech signal is synthesized by
the generated LSFs and TFTE.

In the DNN-based speech synthesis system, the input fea-
ture vector includes 210-dimensional contextual information,
which consists of 203 binary features for categorical linguis-
tic contexts and 7 numerical features for numerical linguistic
contexts. The output feature vector contains 144-dimensional
acoustic parameters that consist of LSFs, parameterized SEW
and REW coefficients, log-F0, and energy. The time dynamics
of these parameters are also included for the speech parame-
ter generation algorithm. Before training, both input and out-
put features are normalized: zero-mean unit-variance normal-
ization is used for input features; on the other hand, minimum-
maximum (from 0.01 to 0.99) normalization is used for output
features. In the training, the weights are initialized randomly
and trained by using a back-propagation procedure based on a
mini-batch stochastic gradient descent algorithm [18].

To evaluate the performance of proposed system, objective
and subjective test results are compared to those of the conven-
tional system based on HMM-ITFTE. In the subjective test, ad-
ditional DNN-based system using STRAIGHT is also included.
Note that STRAIGHT is well known as the high quality speech
analysis/synthesis algorithm in the recent study of speech syn-
thesis systems [5]. In the HMM-ITFTE system, a context-
dependent speech synthesis system is constructed (setup details
are given in [7]). In order to ensure a fair comparison with the
DNN-based system, the model size is controlled by adjusting
a scale factor of the MDL criteria. In the DNN-STRAIGHT
system, the experimental setup is same as the proposed DNN-
based system, except for the output features. The acoustic pa-
rameters are changed to be suitable for STRAIGHT, including
24-dimensional LSFs, 22-dimensional BAPs, log-FO, energy,
and their time dynamics. The binary value of voiced/unvoiced
(V/UV) information is added to the output features, and log-FO
values are interpolated for the unvoiced frames [10].

4.2. Objective test results

To evaluate the objective quality of synthesized speech, we
compare distortions in acoustic parameters obtained from orig-
inal speech with those estimated by DNN/HMM systems. The
metrics for measuring distortion are log-spectral distance (LSD)
for LSFs in dB, RMSE for FO in Hz, and NMSE for SEW and
REW. The test results for different architecture setups of DNN
systems and MDL factors of HMM systems are shown in Ta-
bles 2 and 3. From the results, it is clear that the ITFTE param-
eters generated by the DNN-based system contain smaller esti-
mation errors than those generated by the HMM-based method.
The FO RMSE of the DNN-based system is also smaller than
that of the HMM-based one, which results in more accurate re-
construction of whole frequency SEW and REW magnitudes.
Although the results on LSD are similar in both systems, it
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Table 2: Test results for different MDL factors (with model size)
of the conventional HMM-ITFTE system.

HMM- LSD | FORMSE | SEW REW

ITFTE (dB) (Hz) NMSE | NMSE
a=3.0 (0.44M) | 3.227 16.788 0.262 0.308
a=2.0 (0.68M) | 3.188 16.732 0.261 0.307
a=1.0(1.35M) | 3.129 16.401 0.258 0.303
a=0.6 (2.65M) | 3.098 16.759 0.257 0.301

Table 3: Test results for different architectures (with model size)
of the proposed DNN-ITFTE system.

DNN- LSD | FORMSE | SEW REW
ITFTE (dB) (Hz) NMSE | NMSE
512x2(0.46M) | 3.240 14.748 0.220 0.255
512x3(0.71M) | 3.192 13.218 0.218 0.254
1024 x2 (1.41M)| 3.207 14.477 0.219 0.256
1024 x3 (2.46M)| 3.189 15.766 0.219 0.254

DNN-STRAIGHT [ Neutral @ DNN-ITFTE

15.0% 11.3% 73.8%

HMM-ITFTE = Neutral @ DNN-ITFTE

25.0% 22.9% 52.1%

Figure 3: Results of preference tests (%).

is clear that the DNN-based system has advantages over the
HMM-based one in terms of modeling the ITFTE-related pa-
rameters. Moreover, since the accuracy of these parameters is
highly related to the quality of synthesized speech, the percep-
tual quality of synthesized speech from the DNN-based system
is expected to be better than that from the HMM-based one.

4.3. Subjective test results

The perceptual quality of the proposed system is evaluated by
performing an A/B preference listening test. The proposed sys-
tem is compared with the conventional systems using HMM-
ITFTE and DNN-STRAIGHT. In the test, twelve experienced
listeners are asked to provide quality judgments. Twenty utter-
ances are randomly selected from the evaluation set, then they
are synthesized by the HMM-based system (« = 0.6) and the
DNN-based systems (1024 x 3). Figure 3 depicts the results of
the preference test, which verifies that the proposed system pro-
vides much higher perceptual quality than that of conventional
systems.

5. Conclusions

A DNN-based statistical parametric speech synthesis system us-
ing the ITFTE model has been proposed. To overcome the lim-
itations of conventional HMM-based speech synthesis systems,
a centralized DNN model was introduced to replace the decision
trees of the HMM training process. The proposed DNN training
process improved model accuracy; thus, significantly reducing
the estimation error while generating ITFTE parameters in the
synthesis step. Subjective listening tests also confirmed the su-
periority of the proposed system over the conventional ones.
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