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Abstract
We investigate an improved time-frequency trajectory excita-
tion (ITFTE) vocoder for deep neural network (DNN)-based
statistical parametric speech synthesis (SPSS) systems. The
ITFTE is a linear predictive coding-based vocoder, where a
pitch-dependent excitation signal is represented by a periodicity
distribution in a time-frequency domain. The proposed method
significantly improves the parameterization efficiency of ITFTE
vocoder for the DNN-based SPSS system, even if its dimension
changes due to the inherent nature of pitch variation. By utiliz-
ing an orthogonality property of discrete cosine transform, we
not only accurately reconstruct the ITFTE parameters but also
improve the perceptual quality of synthesized speech. Objec-
tive and subjective test results confirm that the proposed method
provides superior synthesized speech compared to the previous
system.
Index Terms: improved time-frequency trajectory excitation
vocoder, speech synthesis, deep neural network

1. Introduction
Statistical parametric speech synthesis (SPSS) systems have
been significantly advanced when combined with a deep neural
network (DNN)-based training process. A centralized network
enables compact modeling of complex dependencies between
input contexts and output acoustic features, which not only im-
proves the accuracy of acoustic models but also alleviates over-
smoothing problems in generated parameters. Various analy-
ses have also confirmed that DNN-based SPSS systems perform
significantly better than conventional approaches based on hid-
den Markov models [1, 2, 3, 4].

However, the impact of vocoding techniques remains un-
clear even though it is undoubtedly a key component for syn-
thesizing natural voices. In our previous work, we proposed a
high-quality speech vocoder for SPSS systems by using a time-
frequency trajectory excitation (TFTE) model [5]. By decom-
posing a pitch-dependent excitation signal into a slowly evolv-
ing waveform (SEW) and a rapidly evolving waveform (REW),
the TFTE model extracts the periodicity distribution of the exci-
tation signal in the time-frequency domain [6, 7, 8]. The SEW,
which is the most important parameter in the TFTE model, rep-
resents the quasi-periodic/voiced portion of the excitation; in
contrast, the REW represents the remaining noise-like compo-
nents. Since the time-varying periodicity of various phonetic
information is effectively controlled by SEW and REW, the per-
ceptual quality of the TFTE model is much better than that of
conventional band aperiodicity (BAP)-based methods [5].

An improved TFTE (ITFTE) vocoder, which provides a
novel parameterization method for the TFTE model, also en-
hanced the perceptual quality of synthesized speech in SPSS
systems [9, 10]. Note that the SEW and REW cannot be directly
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applied to the DNN training process because their parametric
dimensions vary depending on the length of the pitch interval.
In the ITFTE vocoder, SEW was first divided into fixed number
of frequency sub-bands, and then transformed with a discrete
cosine transform (DCT). The first DCT coefficient of each sub-
band, which represents a mean (average) component, was used
in the DNN training process; the remaining coefficients were
stochastically generated by Gaussian random variables. In the
case of REW, it was modeled via a power contour estimation
method because perceptual significance did not differ greatly
from that achieved using the REW parameter itself [11]. Con-
sequently, this resolved the problem of dimensional variation in
the training process.

To further improve the whole framework, we propose a
full-band DCT-based parameterization method for the ITFTE
vocoder. The previous sub-band DCT-based approach produced
perceptually non-transparent sound when all the sub-bands
were combined into a full-band SEW, because the stochasti-
cally generated random variables could not provide enough in-
formation for reconstruction. In the proposed method, rather
than dividing the SEW into sub-bands, the DCT is applied to
the full-band SEW directly. By using the energy compactness
and invertibility properties of DCT [12], the entire frequency in-
formation of the SEW can be simply and accurately recovered
from the fixed number of DCT coefficients. Furthermore, the
reconstructed SEW presents smoother shape due to the orthog-
onality of the DCT basis functions. Various analyses verify that
this approach significantly reduces reconstruction errors of the
ITFTE parameters in the DNN training framework. Objective
and subjective experimental results also confirm that the synthe-
sized quality of the proposed system is superior to the previous
approach.

2. Improved time-frequency trajectory
excitation vocoder

2.1. TFTE model

In ITFTE vocoder, a speech signal is first inverse filtered by us-
ing linear prediction (LP) coefficients, and then an excitation
signal is represented by a time-frequency distribution of period-
icity. Let u(n, φ) denote a periodic function with φ extracted at
the n-th frame, then the TFTE can be represented as follows:

u(n, φ) =

P (n)/2∑
k=1

[Ak(n) cos(kφ) +Bk(n) sin(kφ)], (1)

where the phase function is defined as φ(m) = 2πm/P (n)
with a pitch period P (n); Ak(n) and Bk(n) denote the k-th
discrete-time Fourier coefficients of the excitation signal [8].

The SEW, which represents the harmonic components of
the excitation signal, is obtained by applying a low-pass filter
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(LPF) to the TFTE along the time-domain axis as follows:

uSEW (n, φ) =

L∑
l=1

h(l)u(n− l, φ), (2)

where h(l) denotes an L-th order LPF. Note that the SEW is
the salient parameter in the ITFTE vocoder, since it contains
most of the voicing information. The REW, which represents
the noisy components beyond the cut-off frequency of the LPF,
is obtained by removing the SEW from the TFTE as follows:

uREW (n, φ) = u(n, φ)− uSEW (n, φ). (3)

Therefore, the periodicity distribution is efficiently represented
by the SEW and REW, whereby it can produce natural shape of
the excitation signal.

2.2. Sub-band DCT-based parameterization method for the
ITFTE vocoder
Although the TFTE model provides the high-quality analy-
sis/synthesis performance, its parameters cannot be directly ap-
plied to the DNN training process because their parametric di-
mensions change over time due to the variation of pitch period.
In our previous works [9, 10], the SEW was parameterized by
a sub-band DCT (SB-DCT)-based modeling technique in order
to impose a fixed dimension; in contrast, the REW was modeled
as Legendre orthonormal polynomials.

In the SB-DCT method, the SEW magnitude spectrum is
first divided into K number of frequency sub-bands, ck,1...

ck,Jk


T

=

 uSEW (n, Jk−1 + 1)
...

uSEW (n, Jk−1 + Jk)


T

, (4)

1 ≤ k ≤ K, (5)
where ck,j denotes the j-th SEW magnitude of the k-th sub-
band; Jk denotes a length of the k-th sub-band that satisfies the
following condition:

K∑
k=1

Jk = P (n)/2, (6)

where P (n)/2 denotes the length of the SEW. Each sub-band is
then transformed with the DCT as follows:

Ck,m =
1

Jk

Jk∑
j=1

cj,k cos

(
π

Jk
(j − 0.5) (m− 1)

)
, (7)

1 ≤ m ≤ Jk, (8)
where Ck,m represents the m-th DCT coefficient of the k-th
sub-band. As the DCT has good decorrelation and energy com-
pactness properties, most SEW magnitude-related information
is concentrated in the first few coefficients. Therefore, the first
coefficient (Ck,1, 1 ≤ k ≤ K) of each sub-band, which is de-
fined as an SB-DCT coefficient, is used for the DNN training
process. On the other hand, the remaining coefficients in each
sub-band are stochastically generated by Gaussian random vari-
ables in the synthesis step.

However, this approach cannot fully exploit the advantages
of the DCT. Note that the first coefficient of DCT is the mean
(average) of the input signal, whereas the remaining coefficients
are the weights of the corresponding orthogonal basis func-
tions at different frequencies, which can efficiently represent the
shape of input signal. Although the first DCT coefficient of each
sub-band (SB-DCT coefficient) can be well modeled by the
DNN, stochastically generated random variables have limited

(a)

(b)

(c)

Figure 1: SEW magnitude spectrum (a) obtained from recorded
speech, (b) reconstructed by SB-DCT coefficients, (c) recon-
structed by FB-DCT coefficients (18 coefficients in both SB-
DCT and FB-DCT).

information to represent the remaining coefficients. As a result,
the reconstructed sub-band causes a blocky effect, which cannot
produce a continuous SEW shape when all the sub-bands are
combined into the full-band signal. Furthermore, because the
DNN training process does not consider the discontinuity be-
tween the adjacent sub-bands, the quality of synthesized speech
becomes perceptually non-transparent.

2.3. Full-band DCT-based parameterization method for the
ITFTE vocoder
To alleviate the aforementioned problems of the previous ap-
proach, this paper proposes a full-band DCT (FB-DCT)-based
parameterization method for the ITFTE vocoder. Rather than
transforming the sub-band SEW magnitude into the DCT-
domain, the DCT is applied to the full-band SEW magnitude
as follows:

Cm =
1

J

J∑
φ=1

uSEW (n, φ) cos
(π
J
(φ− 0.5) (m− 1)

)
, (9)

1 ≤ m ≤ J, (10)
where J = P (n)/2 denotes the length of the SEW at n-th
frame. By setting the higher-order DCT coefficients to zero, the
full-band SEW magnitude is simply reconstructed by applying
an inverse DCT as follows:

ûSEW (n, φ) = C̃1 + 2

J∑
m=1

C̃m cos (π (φ− 0.5) (m− 1)),

(11)
1 ≤ φ ≤ J, (12)

C̃m =

{
Cm,
0,

1 ≤ m ≤ K
otherwise , (13)
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(a)

(b)

Figure 2: Average NRMSE results for trained SB-DCT and
FB-DCT coefficients for (a) Korean male and (b) US female
speaker.

where the lower K-th order non-zero DCT coefficients are
defined as full-band DCT (FB-DCT) coefficients. Since the
FB-DCT coefficients consist of comparatively large sets of
smoothed orthogonal basis functions, the reconstructed SEW
magnitudes have more accurate shape than the those derived
from the SB-DCT coefficients.

Figure 1-(a) depicts an example of the SEW magnitude ex-
tracted from a recorded speech signal; Figure 1-(b) shows the
reconstructed SEW magnitude from the SB-DCT coefficients
(analysis/synthesis without DNN training, when there are 18
sub-bands; K = 18). As shown in these figures, the full-band
information of SEW magnitude can be represented by using
several SB-DCT coefficients, but there exist discontinuities at
the sub-band boundaries, which degrades the perceptual qual-
ity of the synthesized speech. Figure 1-(c) depicts an example
of the reconstructed SEW magnitude from the FB-DCT coef-
ficients (lower 18 coefficients; K = 18). Compared with the
previous approach shown in Figure 1-(b), it is clear that the pro-
posed algorithm recovers the SEW magnitude very well.

3. Advantages of full-Band DCT-based
parameterization method

This section describes the advantages of the proposed algorithm
when it is combined with the DNN training process. The SB-
DCT and FB-DCT coefficients extracted from Korean and En-
glish speech corpora are used to verify the effectiveness of the
proposed method. The trainability of the DNN is measured in
terms of normalized root mean square error (NRMSE) with re-
spect to different dimensions of the SB-DCT and FB-DCT co-
efficients as follows:

NRMSE =
1

N

N∑
n=1

√√√√ 1

K

K∑
k=1

(
x(n, k)− x̂(n, k)

x(n, k)

)2

,

(14)
whereN andK denote the number of frames and the dimension
of parameters, respectively; x(n, k) denotes either the SB-DCT
or FB-DCT coefficients extracted from the recorded speech;
x̂(n, k) denotes the coefficients generated by the trained DNN.
Note that the standard DNN-based SPSS system is used to gen-
erate the SB-DCT and FB-DCT coefficients [1], for which setup
details are shown in section 4.1.

Figure 2 represents NRMSE results for each system with
respect to different dimensions of SB-DCT and FB-DCT coeffi-
cients. For both the Korean male (upper) and US female (lower)
speakers, the NRMSEs show consistent results, in which the
FB-DCT method contains smaller training errors than the SB-

(a)

(b)

Figure 3: Average LSMD results for reconstructed SEW mag-
nitude from SB-DCT and FB-DCT coefficients for (a) Korean
male and (b) US female speaker.

DCT method. Therefore, it is clear that the proposed system
is more robust than the previous approach if the parameters are
trained with the DNN framework.

To further analyze the effect of DNN training, a log-SEW
magnitude distance (LSMD) in dB between the original and re-
constructed SEW magnitude is measured as follows:

LSMD [dB] =
1

N

N∑
n=1

√√√√ 1

J

J∑
φ=1

(
20 log

usew(n, φ)

ûsew(n, φ)

)2

,

(15)

where J = P (n)/2 denotes the length of the SEW at n-th
frame; usew(n, φ) and ûsew(n, φ) denote the SEW magnitude
extracted from the recorded speech and reconstructed by either
the SB-DCT or FB-DCT coefficients, respectively.

Figure 3 shows LSMD results for the Korean male (up-
per) and US female (lower) speakers with respect to the dimen-
sion of parameters. Before performing the DNN training (i.e.,
only the process of analysis/synthesis), the reconstruction errors
from the FB-DCT processing are consistently small in the case
of the Korean male speaker, whereas for the US female speaker,
the SB-DCT accurately reconstructs SEW magnitude when the
dimension increases. However, following DNN training, all the
LSMDs of the FB-DCT were smaller than those of the SB-DCT
for both the Korean male and US female speakers. These results
support the NRMSE analysis, which showed that the proposed
system is more robust to the DNN training process than the pre-
vious method, resulting in more accurate reconstruction of SEW
magnitude.

4. Experiments
4.1. Experimental setup

Two phonetically and prosodically rich speech corpora (Korean
and English) were used in our experiment, where each corpus
was recorded by the professional Korean male and US female
speaker, respectively. The speech signals were sampled at 16
kHz and quantized by 16 bits. Each database was divided into

Table 1: Number of utterances for different sets.

Speaker Training Development Test
Korean male 2500 (∼3.2 h) 200 200
US female 5114 (∼6.0 h) 200 200
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Table 2: Objective test results for previous and proposed systems.
Speaker System LSD (dB) F0 RMSE (Hz) LSMD (dB) LRMD (dB) v/uv error rate (%)
Korean Previous SB-DCT 4.02 17.89 4.43 5.75 6.76
male Proposed FB-DCT 4.01 18.63 4.25 5.74 6.76
US Previous SB-DCT 3.21 17.66 5.44 5.20 4.88

female Proposed FB-DCT 3.21 17.71 5.17 5.11 4.90

three parts, namely training, development, and test sets. The
size of each set is shown by the number of utterances in Table 1.

In the analysis step, the frame length was set to 20 ms,
and the spectral and excitation parameters were extracted ev-
ery 5 ms. The 40-dimensional LP coefficients were extracted
and converted to the line spectral frequencies (LSFs) for spec-
tral parameters. To prevent unnatural spectral peaks in the
LP analysis filter, each coefficient (ai, i = 1, ..., 40) was multi-
plied by the bandwidth expansion factor (0.981i) [13]. On the
other hand, the 18-dimensional and 4-dimensional parameter-
ized SEW and REW coefficients were extracted for the excita-
tion parameters, respectively. The fundamental frequency (F0),
energy, and v/uv information were also extracted for the DNN
training process.

In the DNN training step, all of these parameters, together
with their time dynamics [14], composed the 193-dimensional
output feature vectors. The corresponding input feature vec-
tors of the Korean and English databases included 210 and 346-
dimensional contextual information, consisting of: 203 and 311
binary features for categorical linguistic contexts; 7 and 35 nu-
merical features for numerical linguistic contexts, respectively.
Before training, both input and output features were normalized
to have zero-mean and unit-variance. The hidden layers com-
prised 4 layers of 1024 units and the sigmoid activation func-
tion was used for the hidden and output layers. In the training,
the weights were first initialized by using a layer-wise back-
propagation (BP) pre-training method [15], and then trained
by using the BP procedure based on the mini-batch stochas-
tic gradient descent algorithm [16]. The minibatch size was
128 and RMSProp was performed to determine the learning rate
[17]. The training and test procedures were implemented by us-
ing the computational network toolkit (CNTK) [18]. Since the
DNN could not predict the variance used for a speech parameter
generation (SPG) algorithm [19], we used pre-computed global
variances of output features from all the training data.

In the synthesis step, the mean vectors of all the output fea-
ture vectors were first predicted by DNN, and then the SPG al-
gorithm was applied to generate smooth trajectories of acoustic
parameters. To reconstruct the SEW, the generated SB-DCT
or FB-DCT SEW coefficients were converted to SEW magni-
tude; a fixed phase spectrum drawn from speech was used for
the SEW phase [7]. In contrast, the REW magnitude was con-
verted from the generated polynomial or FB-DCT REW coeffi-
cients, whereas its phase was randomly selected. The TFTE was

Table 3: MOS test results with 95% confidence interval for pre-
vious and proposed systems.

System Korean male US female
Recorded speech 4.96±0.04 4.33±0.18

Analysis/synthesis: SB-DCT 4.50±0.14 3.84±0.18
Analysis/synthesis: FB-DCT 4.48±0.13 3.92±0.18

DNN-SPSS: SB-DCT 2.62±0.19 3.54±0.15
DNN-SPSS: FB-DCT 3.06±0.21 3.63±0.15

then obtained by combining the SEW and REW with its pitch
period. Finally, a single pitch-based speech signal was synthe-
sized by the generated LSFs and TFTE. To enhance spectral
clarity, LSF-sharpening [20, 21] and formant-enhancing [22]
filters were also applied.

The previous and proposed systems shared same acoustic
parameters such as LSFs, F0, energy, and gain. The differ-
ence between two systems was the method of parameterizing
the SEW and REW magnitudes. In the previous system, the
SB-DCT and polynomial coefficients were used to parameter-
ize the SEW and REW magnitude, respectively; in the proposed
system, the FB-DCT coefficients were used to parameterize the
magnitudes of both SEW and REW.

4.2. Objective and subjective test results
In the objective test, we compared distortions in acoustic param-
eters obtained from the original speech with those estimated by
DNNs. The metrics for measuring distortion were log-spectral
distance (LSD) for LSFs (dB), root mean square error (RMSE)
for F0 (Hz), and LSMD for SEW (dB), log-REW magnitude
distance (LRMD) for REW (dB), and v/uv error rate (%).

The test results for the previous and proposed systems are
shown in Table 2. The LSD, F0 RMSE, and v/uv error rate
are similar in both systems, since same parameters were trained
by the DNN. Note that the proposed system contains larger F0
RMSE than the previous system. This could be due to the ini-
tialization of the DNN weights. In the case of the LSMD, the
proposed system has much smaller error, as described in the
previous section. The LRMD is also smaller in the proposed
system, which verifies that the FB-DCT method is also more
effective than the polynomial curve-fitting method for parame-
terizing the REW magnitude.

To evaluate the perceptual quality of the proposed system,
mean opinion score (MOS) listening tests were performed. In
the tests, eight native Korean and eight native US listeners were
asked to make quality judgments of synthesized Korean and En-
glish utterances, respectively (1: Bad, 2: Poor, 3: Fair, 4: Good,
5: Excellent). Twenty utterances were randomly selected from
the test set in both Korean and English database, which were
then synthesized by the previous and the proposed systems. The
results of the MOS test (Table 3) show that the proposed sys-
tem provides superior perceptual quality than that of the previ-
ous system, where the proposed system achieved 3.06 and 3.63
MOS for the Korean and English database, respectively.

5. Conclusion
A parameterization method for improved time-frequency trajec-
tory excitation (ITFTE) vocoder has been proposed. To over-
come the discontinuity problem of the previous approach, we
utilized a full-band DCT (FB-DCT) method to model the ITFTE
parameters. The proposed FB-DCT method was confirmed to
be robust to the DNN training process; thus, the excitation sig-
nal was reconstructed accurately when the ITFTE parameters
were combined with the DNN training process. Subjective lis-
tening tests also confirmed the superiority of the proposed sys-
tem over the previous method.
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