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Effective Spectral and Excitation Modeling
Techniques for LSTM-RNN-Based Speech

Synthesis Systems
Eunwoo Song, Frank K. Soong, and Hong-Goo Kang

Abstract—In this paper, we report research results on modeling
the parameters of an improved time-frequency trajectory exci-
tation (ITFTE) and spectral envelopes of an LPC vocoder with
a long short-term memory (LSTM)-based recurrent neural net-
work (RNN) for high-quality text-to-speech (TTS) systems. The
ITFTE vocoder has been shown to significantly improve the per-
ceptual quality of statistical parameter-based TTS systems in our
prior works. However, a simple feed-forward deep neural network
(DNN) with a finite window length is inadequate to capture the
time evolution of the ITFTE parameters. We propose to use the
LSTM to exploit the time-varying nature of both trajectories of
the excitation and filter parameters, where the LSTM is imple-
mented to use the linguistic text input and to predict both ITFTE
and LPC parameters holistically. In the case of LPC parame-
ters, we further enhance the generated spectrum by applying LP
bandwidth expansion and line spectral frequency-sharpening fil-
ters. These filters are not only beneficial for reducing unstable
synthesis filter conditions but also advantageous toward mini-
mizing the muffling problem in the generated spectrum. Exper-
imental results have shown that the proposed LSTM-RNN system
with the ITFTE vocoder significantly outperforms both similarly
configured band aperiodicity-based systems and our best prior
DNN-trainecounterpart, both objectively and subjectively.

Index Terms—Speech synthesis, improved time-frequency
trajectory excitation vocoder, long short-term memory, recurrent
neural network.

I. INTRODUCTION

A S THE accuracy of the acoustic-modeling process has
increased following the introduction of deep neural

networks (DNNs), systems for statistical parametric speech
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synthesis (SPSS) have been popularly used for many applica-
tions [1]. Because the centralized DNN framework compactly
models complicated dependencies between input contexts and
output acoustic features, it not only improves the accuracy of
acoustic models but also alleviates the over-smoothing problems
of generated parameters [1]–[4]. Accordingly, many researchers
have analyzed the effects of various vocoding techniques
on the quality of synthesized speech [5]–[8], as the speech
analysis/synthesis module itself determines the best achievable
quality of text-to-speech (TTS) systems.

In many vocoding schemes, the parametric representation of
speech is largely based on the source-filter theory of speech
production [5]. This model assumes that the speech signal is
composed of the vocal folds-related excitation signal and the vo-
cal tract-related transfer function. The latter has been relatively
well approximated by a digital filter, i.e., a linear prediction
(LP) filter; however, the former has been overly simplified, i.e.,
a pulse or noise (PoN) [6], creating buzzy or whispery sounds.
To reduce this kind of unnatural synthetic quality, several types
of mixed excitation models have been adopted [7], [8]. By sep-
arating the whole frequency band into several fixed sub-bands,
the excitation signal of each sub-band is represented by either
PoN or band aperiodicities (BAP) [9]–[11]. However, it is still
challenging to reliably model the excitation components as these
methods cannot fully represent the time-varying periodicity of
various types of phonetic information.

Our previous research proposed an improved time-frequency
trajectory excitation (ITFTE) vocoder [12]; and implemented
DNN-based SPSS systems with it [13], [14]. In the ITFTE
vocoder, a pitch-dependent excitation signal is first obtained by
applying an LP inverse filter to an input speech signal, which is
then represented in the time-frequency domain. This excitation,
i.e., the TFTE signal, is further decomposed into slowly evolv-
ing waveform (SEW) and rapidly evolving waveform (REW)
components. The SEW, obtained from a frequency-dependent
low-pass filtering of the TFTE signal through the temporal axis,
represents the quasi-periodic/harmonic components of the exci-
tation. In contrast, the REW represents the remaining noise-like
components. Therefore, utilizing the SEW/REW decomposition
enables effective estimation of the periodicity distribution of the
excitation signal in the time-frequency domain.

In the DNN-based SPSS system, these excitation parameters
are used to compose the output acoustic feature vectors together
with the spectral envelope parameters. The whole neural net
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then learns a regression model to map the input linguistic fea-
ture vectors to the output vectors, which minimizes mean-square
errors between the target and predicted output vectors. Thanks
to its ability to effectively capture non-linear relationships, the
DNN-based SPSS system has been verified to perform bet-
ter than the conventional hidden Markov model (HMM)-based
systems [13]. However, it is limited in representing sequential
characteristics, because it adopts a frame-by-frame modeling
method. Note that the SEW and REW represent the time-varying
periodicity of phonetic information [15]–[17]; therefore, it is
very important to accurately model the dynamic nature of
evolving characteristics in the time domain. Although a speech
parameter generation (SPG) algorithm alleviates the problem
by producing a smooth trajectory of the parameters [18], this
causes harmonic structures to be smeared at the phoneme
boundaries [19].

To address these limitations, we propose acoustic modeling
methods based on long short-term memory (LSTM) recurrent
neural networks (RNNs). LSTM architectures are used to build
a non-linear function that maps contextual information to the
corresponding ITFTE excitation and spectral envelope parame-
ters. It is well known that the LSTM structure has the capability
to model temporal sequences and their long-term dependen-
cies [20], [21]; therefore, it has demonstrated better quality than
the DNN framework in speech-synthesis applications [22]–[24].
In this framework, the LSTM memory blocks inherently train
the temporal variation of the strongly correlated features, such
as SEW in consecutive frames. As a result, acoustic modeling
methods based on LSTM reconstruct ITFTE and spectral param-
eters more accurately than the DNN-based method previously
used. To verify the effectiveness of the proposed system, we
analyze the trainability of the excitation parameters compared
with that of the previously used approach. The findings confirm
that the proposed system significantly reduces estimation errors
in the generated parameters.

In addition to adopting LSTM-based acoustic models, we
also introduce several enhancement techniques, especially for
the spectral parameters: linear prediction bandwidth expansion
(LP-BWE) and line spectral frequency-sharpening (LSF-S) fil-
ters. The first filter is used to prevent unnatural LP filter con-
ditions. Increasing the order of LP coefficients improves the
spectral intelligibility of the synthesized speech [25]; however,
it sometimes makes the synthesis filter unstable. Since estima-
tion errors in the excitation signal result in unstable outputs
in the spectral filtering process, it is necessary to broaden the
bandwidth at the overly emphasized spectral peaks. Similar to
early speech coders [26], [27], the LP-BWE filter is applied to
shift the poles of the synthesis filter radially toward the z-plain
origin, thereby significantly reducing unstable frame rates in
the cases of both analysis/synthesis and LSTM training. The
second filter is used to alleviate the over-smoothing problem
of generated spectral parameters. It operates based on the re-
lationship between the LSFs and their corresponding spectral
structures [28], [29]. Two consecutive LSFs near the spectral
peaks tend to be close, whereas those near the spectral valleys
are far from each other [30]. In the proposed LSF-S filter, the
location of the target LSF is first compared with its adjacent left

and right LSFs and then moved toward the closer one. As this
process can reconstruct sharper spectral peaks and valleys, it
not only alleviates the muffling problem caused by the statistic-
oriented training process, but also enhances spectral clarity in a
perceptual listening test.

The remainder of this article describes the key mod-
ules for designing the high-quality TTS system, including
the ITFTE vocoder for extracting the excitation parameters
(Section III), the LSTM structures for improving the acoustic
models (Section IV), and the spectral filters for enhancing the
perceptual quality of the synthesized speech (Section V). The
article also includes the objective and subjective experimental
results (Section VI), which confirm that the proposed system
significantly outperforms both STRAIGHT and WORLD (D4C
edition [31]) vocoders trained with the same LSTM configura-
tion [10], [11], and our best prior DNN-trained counterpart [13].

II. RELATIONSHIP TO PRIOR WORK

The idea of using an ITFTE vocoder with the SPSS systems
is not very new. Statistical models such as the decision-tree-
based HMM [12] and DNN [13] have been combined with the
ITFTE vocoder, and we have verified its superior quality over
other vocoders. However, limitations in modeling the vocoder
parameters have been reported by several points: (1) HMMs
cannot fully model cross-dimensional correlations between
ITFTE parameters, because each state is modeled by a single
Gaussian, diagonal covariance output distribution. (2) Having a
prohibitively large tree and separating the training data set can
lead to over-fitting problems when generating the ITFTE pa-
rameters. (3) Substituting the decision-tree-based HMMs into
a centralized feed-forward DNN could address prior two prob-
lems; however, its frame-by-frame modeling paradigm is not
suitable for representing the time-varying characteristics of the
ITFTE parameters. (4) Although applying the SPG algorithm al-
leviates the discontinuity in generated parameters, it aggravates
the over-smoothing problem.

To ameliorate the aforementioned issues, our aim here is to
use the LSTM architectures to improve the model accuracy of
the ITFTE and LPC parameters. There have been prior works
in using the LSTM in the TTS applications [22]–[24]. How-
ever, our research differs from these studies in several ways:
(1) we focus further on the effect of LSTMs in modeling ex-
citation parameters, whereby the trainability represented by a
reconstruction error in the excitation signal is analyzed in detail.
(2) Our experiments verify the performance of various architec-
tures of neural networks including a DNN, a hybrid system
(DNN+LSTM), and a deep LSTM (DLSTM). The synthesis
quality of each system is investigated by varying the amount of
the training data set. Both the objective and the subjective test
results could be usefully referred to when designing similarly
configured TTS systems. (3) Regarding the vocoder itself, in a
perceptual listening test, the proposed system shows superiority
over BAP-based vocoders with the same LSTM model structure.

In addition to the above, we explore the use of spectral en-
hancements, including LP-BWE and LSF-S filters. Analysis
shows that the LP-BWE filter reduces unstable synthesis filter
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conditions in high-order LPC and that the LSF-S filter improves
perceptual quality in terms of spectral clarity.

III. IMPROVED TIME-FREQUENCY TRAJECTORY

EXCITATION VOCODER

In the ITFTE vocoder, an excitation signal is generated by an
inverse filtering of an input speech signal with the LP analysis
filter. A two-dimensional TFTE signal, u(n, φ), is used to rep-
resent the spectral shape of excitation along the phase axis and
the evolution of this shape along the time axis as follows:

u(n, φ) =
P (n)/2∑

k=1

[Ak (n) cos(kφ) + Bk (n) sin(kφ)], (1)

where Ak (n) and Bk (n) denote the k-th discrete-time Fourier
series coefficients of the excitation signal at the n-th frame;
φ(m) = 2πm/P (n) denotes a phase function with a pitch
period P (n) [17].

The TFTE is further decomposed into two components by
filtering each frequency component along the time-domain axis.
The SEW that represents the quasi-periodic/harmonic compo-
nent is obtained from a low-pass filter (LPF) as follows:

uSEW(n, φ) =
L∑

l=1

h(l)u(n − l, φ), (2)

where h(l) denotes an L-th order LPF. Beyond the cut-off fre-
quency, the remaining noise-like components are represented
by the REW as follows:

uREW(n, φ) = u(n, φ) − uSEW(n, φ). (3)

Therefore, the time-evolving periodicity is efficiently repre-
sented by the SEW and REW components, thereby producing
the natural shape of the excitation signal.

However, these parameters cannot be directly applied to the
DNN/LSTM training process, because their parametric dimen-
sions change over time due to variation in the pitch period. In the
ITFTE vocoder, the SEW and REW components are parameter-
ized by the modeling technique based on full-band (FB) discrete
cosine transform (DCT) to impose a fixed dimension [14]. In
the analysis step, the SEW magnitude is first transformed into
the DCT domain as follows:

Cm =
1
J

J∑

φ=1

uSEW(n, φ) cos
(π

J
(φ − 0.5) (m − 1)

)
, (4)

1 ≤ m ≤ J, (5)

where J = P (n)/2 denotes the length of the SEW (one-half of
one pitch period) at the n-th frame. As the DCT has good proper-
ties of decorrelation and energy compactness, most information
related to SEW magnitude is concentrated in the first few coef-
ficients. Therefore, the lower K-th order coefficients, defined as
FB-DCT-SEW coefficients, are used for the DNN/LSTM train-
ing process. By setting the higher-order DCT coefficients to zero
in the synthesis step, the full-band SEW magnitude is simply

reconstructed by applying an inverse DCT, as follows:

ûSEW(n, φ) = C̃1 + 2
J∑

m=2

C̃m cos (π (φ − 0.5) (m − 1)),

(6)

1 ≤ φ ≤ J, (7)

C̃m =

{
Cm ,

0,

1 ≤ m ≤ K

otherwise.
(8)

In the case of REW, it is modeled via either a method of estimat-
ing power contour [17] or the FB-DCT approach, the latter of
which has been verified by previous experiments as exhibiting
better modeling performance [14].

IV. LSTM-BASED ACOUSTIC MODELING METHODS FOR

ITFTE PARAMETERS

This section describes the previously used DNN-based and
the proposed LSTM-based acoustic modeling methods that
use ITFTE parameters as outputs. As the parameters represent
the time-evolving characteristics of the excitation signal, their
temporal characteristics should be accurately modeled in the
training process. The LSTM architecture is beneficial for incor-
porating the sequential nature of the ITFTE parameters into the
acoustic model.

A. DNN-Based Acoustic Modeling Method

Fig. 1(a) depicts the previous feed-forward DNN-based
acoustic modeling framework for the ITFTE parameters [13]. In
this system, rich contexts are first analyzed and then converted to
a sequence of input linguistic features,x = (x1 , . . . , xN ), which
contain binary features for categorical contexts (e.g., phone la-
bels) and numerical features for numerical contexts (e.g., the
number of words in a phrase or the position of the current
frame of the current phone). The corresponding output features,
y = (y1 , . . . , yN ), are composed of the ITFTE and spectral pa-
rameters with their time dynamics. The pairs of input and output
features are then used to train the weights of the DNN using a
backpropagation (BP) procedure [32].

The DNN-based architecture is not suitable for representing
temporal variation in the ITFTE parameters, because it uses
only a frame-by-frame modeling method. As shown in the de-
pendency graph of Fig. 1(a), there is no temporal interaction
between adjacent frames, which results in discontinuities in the
synthesized signal. Although applying the SPG algorithm re-
lieves this problem [18], it cannot fully reflect the temporal
variation in the strongly correlated features, including consecu-
tive SEW frames [19]. As the time-frequency representation of
SEW and REW directly affects the quality of the synthesized
speech, it is desirable to design more elegant modeling methods
that can effectively capture their sequential characteristics.

B. LSTM-Based Acoustic Modeling Methods

This study adopts an LSTM framework as the acoustic model-
ing method for the ITFTE and spectral parameters. The LSTM
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Fig. 1. Framework of the acoustic modeling methods for the ITFTE parameters: (a) previously used DNN, (b) proposed hybrid system of DNN and LSTM, and
(c) proposed DLSTM.

contains special units called memory blocks in the recurrent
hidden layer, and each memory block contains a self-connected
memory cell having multiplicative units called gates. During
the training process, the memory cell maintains its state over
time, and the gates regulate the information flow to decide what
to retain and what to erase from memory. By combining the
previous state, current memory, and input sequence, the net-
work inherently estimates the temporal information of the output
sequence.

The training procedure is almost the same as that for the
DNN framework, but the weights are updated based on the
modified BP procedure, called backpropagation through time
(BPTT) [33]. As the parameters are shared by all time steps in
the network, the gradient at each output depends on both current
and previous time steps. To train the weights successfully, the
BPTT first unfolds the LSTM into the feed-forward network
through time, and then trains the unfolded network using the BP
procedure.

Fig. 1(b) depicts a hybrid neural network architecture [22],
where the DNN and LSTM layers are positioned to the input
linguistic and output acoustic layers, respectively. The figure
shows the dependency between adjacent frames at the last hid-
den layer, which enables the compact modeling of the tem-
poral correlations of the consecutive output features. As a
result, ITFTE parameters are accurately predicted during the
generation procedure.

To further improve accuracy in prediction, as shown in
Fig. 1(c), a deep LSTM (DLSTM) architecture is built by stack-
ing multiple LSTM layers. Note that the LSTM already has a
deep architecture in time, because its hidden state relates to a
function of all previous hidden states. However, the depth in
DLSTMs has an additional meaning in that the input to the net-
work at a given time step goes through multiple LSTM layers
in addition to propagation through time [34]. As the inputs go
through more nonlinear operations per time step, it is possible
to find not only a sequential nature in time but also the mapping
relationship between the features of the linguistic input and the
acoustic output.

C. Trainability Analysis

This section describes the advantages of employing acoustic
modeling methods based on the LSTM for ITFTE parameters.
To verify the effectiveness of the proposed systems, the train-
ability of the DNN and LSTMs (both hybrid and DLSTM) is
measured in terms of the log-SEW magnitude distance (LSMD)
as follows:

LSMD [dB] =
1
N

N∑

n=1

√
1
J

∑J

φ=1

(
20 log

usew(n, φ)
ûsew(n, φ)

)2

,

(9)

where J = P (n)/2 denotes the length of the SEW at the n-th
frame; usew(n, φ) and ûsew(n, φ) denote the SEW magnitude
extracted from the recorded speech and reconstructed by the
generated FB-DCT-SEW coefficients from either the trained
DNN or LSTMs, respectively. Fig. 2 represents the LSMD re-
sults for each system with respect to the various dimensions
of FB-DCT-SEW coefficients. The LSMDs show consistent re-
sults, in which the LSTM-based systems have much smaller
training errors than does the system based on DNN. Among
the LSTM systems, the DLSTM performs best in terms of ac-
curately reconstructing SEW magnitudes. Therefore, the pro-
posed LSTM structures are advantageous for modeling the
ITFTE parameters compared to the previously used DNN-based
system.

D. Determination of Parameter Dimensions

Since the loss in the higher-order DCT coefficients can result
in smoothed SEW spectra, increasing the dimension of FB-DCT-
SEW coefficients is beneficial to reconstructing more accurate
SEW spectra. However, as Fig. 2 shows, there is no dramatic
improvement at a certain dimension. The reason is a limited
information of the higher-order DCT coefficients, which implies
that their detailed characteristics could not be represented by the
DNN/LSTM models. Therefore, we did not impose the entire
dimension to represent SEW components, and a certain number
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Fig. 2. Average LSMD results for the reconstructed SEW magnitude from the
trained DNN or LSTMs (hybrid and DLSTM) with respect to the various di-
mensions of FB-DCT-SEW coefficients. The DNN consists of six feed-forward
hidden layers with 1,024 units; the hybrid system consists of three feed-forward
hidden layers with 1,024 units and one LSTM hidden layer with 512 memory
blocks, respectively; the DLSTM consists of three LSTM hidden layers with
512 memory blocks. More setup details are shown in Section VI-A.

Fig. 3. Average LRMD results for the reconstructed SEW magnitude from the
trained DNN or LSTMs with respect to the different dimensions of FB-DCT-
REW coefficients. In contrast with the LSMD results shown in the Fig. 2, the
reconstructed REW spectra were not highly affected by the DCT dimensions.

of DCT coefficients (i.e., 32-nd or 40-th order) was enough to
represent the SEW spectra.

Similarly, we investigate the effect of the FB-DCT-REW di-
mension on reconstruction error by analyzing the log-REW
magnitude distance (LRMD). Fig. 3 depicts the LRMD re-
sults for each system with respect to the various dimensions of
FB-DCT-REW coefficients. As the REW represents the ran-
domly distributed noise components, the LRMDs from the REW
spectra were not highly affected by the DCT dimensions. Conse-
quently, a few DCT coefficients (i.e., 4-th order) were sufficient
to estimate the envelope of noise spectra.

V. SPECTRAL ENHANCEMENTS FOR SPEECH SYNTHESIS

In the previous section, we showed the effectiveness of
LSTM-based acoustic modeling methods in terms of trainability

of ITFTE parameters. To further improve the synthesis quality of
the entire framework, this section introduces spectral enhance-
ment techniques, including the LP-BWE and LSF-S filters.

A. LP-BWE Filter

The LP-BWE filter is designed to prevent unnatural peaks in
the LP spectral envelope. The high-order LP analysis/synthesis
improves spectral intelligibility, i.e., 40-th or 64-th order for a
16 kHz or 48 kHz sampling rate, respectively [25]. However,
as the bandwidth of the spectral peak becomes too narrow, the
estimation errors in the excitation signal are sometimes boosted
after the spectral filtering process. To avoid generating discon-
tinuous speech segments, the BWE technique is applied to the
LP analysis and synthesis filters. This technique broadens the
bandwidth at the overly emphasized spectral peaks by radially
shifting the spectral poles toward the origin as follows:

H1(z) = 1 −
p∑

i=1

(ai/γ) z−i , (10)

H2(z) =
1

1 − ∑p
i=1 (ai/γ) z−i

, (11)

where H1(z) and H2(z) represent bandwidth-expanded LP
analysis and synthesis filters, respectively; ai and γ denote the
p-th order LP coefficients and the LP-BWE factor, respectively.
To verify how the LP-BWE filter addresses unstable filter con-
ditions, we analyze the unstable frame rates (UFR; %) in cases
of both analysis/synthesis and DLSTM training. The number
of unstable frames Nuf, which is counted when the consecutive
LSFs are extremely close [35], is defined as follows:

Nuf =
N∑

n=1

f

({
p∑

i=2

f (lsfn,i − lsfn,i−1 < D)

}
> 0

)
,

(12)

where ln,i denotes the i-th LSF coefficient at the n-th frame;
D denotes a threshold for minimum distance; f (•) denotes a
logical function defined as follows:

f(•) =

{
1, if “ • ” is true

0, otherwise.

}
. (13)

Fig. 4 depicts the UFR results for spectral parameters with
respect to various distance thresholds (D = 10, 20, ..., 80 Hz).
Without the LP-BWE filter, the figure shows many unstable
spectral peaks, both extracted from recorded speech and gener-
ated from the trained DLSTM. Although the DLSTM generates
smoothed spectra, resulting in a smaller UFR, it still contains
a large number of unstable frames. In contrast, applying the
LP-BWE filter significantly reduces the UFR in cases of both
analysis/synthesis and trained DLSTM.

B. LSF-S Filter

The LSF-S filter is used to alleviate the overly smoothed
spectral structure caused by the statistical training process. The
main reason for its use is to sharpen the spectral peaks and
valleys by adjusting the generated LSFs [28], [29].
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Fig. 4. UFR results for spectral parameters extracted from recorded speech
and generated from the trained DLSTM, both with (w/) and without (w/o) the
LP-BWE filter, with respect to various distance thresholds. The DLSTM consists
of 3 LSTM hidden layers with 512 memory blocks.

Let l̃i denote the i-th LSF coefficient adjusted by the relative
distance between two adjacent LSFs as follows:

l̃i =
|di |2

|di−1 |2 + |di |2
l̂i−1 +

|di−1 |2
|di−1 |2 + |di |2

l̂i+1 , (14)

di = l̂i+1 − l̂i , (15)

1 < i < p, (16)

where l̂i denotes the i-th LSF coefficient generated from the
trained DNN/LSTMs. Then, the sharpened LSF is obtained as
follows:

l∗i = αi l̂i + (1 − αi) l̃i , (17)

where αi denotes a frequency-dependent weighting factor.1 As
shown above, the sharpening process shifts the current LSF
coefficient closer toward one between the adjacent left and right
LSFs, which enables the reconstruction of sharper spectral peaks
and valleys.

Fig. 5 depicts the all-pole spectrum obtained from recorded
speech and generated by the trained DLSTM both with and
without applying the LSF-S filter. As shown in Fig. 5(b), the
formant structure was smoothed because of the statistical av-
eraging of the DLSTM training process. However, the LSF-S
filtering output makes the spectral peak/valleys much clearer,
thereby not only alleviating over-smoothed spectral envelopes
but also synthesizing more-natural speech signals, the results of
which are confirmed in the next section.

VI. EXPERIMENTS

A. Experimental Setup

The experiments used a phonetically and prosodically bal-
anced speech corpus recorded by a Korean male professional

1In this research, we exploited the exponentially decaying weighting fac-
tor (αi = 0.8i−1 , 1 < i < p) to make the filter preserve the low-frequency
spectrum itself and sharpen the higher frequency components. Note that this
approach is advantageous because it avoids generating unnatural spectral peaks
in the low frequency region, as discussed in the previous section.

speaker. The speech signals were sampled at 16 kHz, and each
sample was quantized by 16 bits. In total, 3,300 utterances (about
10 hours) were used for training, 330 utterances (about 1 hour)
were used for validation, and another 330 utterances not in-
cluded in either the training or validation steps were used for
testing.

In the analysis step, the frame length was set to 20 ms, and the
spectral and excitation parameters were extracted at every 5 ms.
The 40-dimensional LP coefficients were extracted and con-
verted to the LSFs for spectral parameters. To prevent unnatural
spectral peaks in the LP analysis/synthesis filter, each coeffi-
cient (ai, i = 1, ..., 40) was multiplied by the LP-BWE factor
(0.981i). In contrast, the 32-dimensional and 4-dimensional
FB-DCT-SEW and FB-DCT-REW coefficients, respectively,
were extracted for the excitation parameters. The fundamen-
tal frequency (F0), energy, and v/uv information were also
extracted for the DNN and LSTM training processes.

In the training step, all these parameters, together with
their time dynamics [36], consisted of 235-dimensional out-
put feature vectors. The corresponding input feature vectors
included 268-dimensional contextual information consisting of
261 binary features for categorical linguistic contexts and seven
numerical features for numerical linguistic contexts. Before
training, both the input and output features were normalized
to have zero-mean and unit-variance.

Table I summarizes the architectures of the DNN, hy-
brid, and DLSTM-based acoustic modeling methods. In the
DNN-based system, the hidden layers comprised six DNN lay-
ers with 1,024 units. The weights were first initialized using a
layer-wise BP pre-training method [37], and then trained using
the BP procedure based on the mini-batch stochastic gradient
descent algorithm. The mini-batch size was 128; RMSProp was
performed to determine the learning rate [38].

The hybrid system consisted of three DNN layers with
1,024 units and one unidirectional LSTM layer with 512 mem-
ory blocks. The DNNs and LSTM were connected to the lin-
guistic input layer and the acoustic output layer, respectively.
The weights were randomly initialized and trained using the
BPTT algorithm. The learning rate was set to 0.02 for the first
10 epochs, 0.01 for the next 20 epochs, and 0.005 for the remain-
ing epochs. To parallelize and increase speed, tens of utterances
were randomly selected for each update and used to update the
weights simultaneously.

The architecture of the DLSTM-based system consisted of
three unidirectional LSTM layers with 512 memory blocks.
Note that their training procedures were the same as those in
the hybrid system. For all methods, the training and test pro-
cedures were implemented using the computational network
toolkit (CNTK) [39].

In the synthesis step, the mean vectors of all output feature
vectors were first predicted by DNN or LSTMs. Then, with
pre-computed global variances of output features from all the
training data, the SPG algorithm was applied to generate smooth
trajectories of acoustic parameters. To reconstruct the SEW and
REW, the generated FB-DCT-SEW and FB-DCT-REW coef-
ficients were converted to SEW and REW magnitude spectra,
respectively; a fixed phase spectrum drawn from speech was
used for the SEW phase [16], whereas the REW phase was
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Fig. 5. Comparison between all-pole spectra (a) obtained from recorded speech (analysis/synthesis), (b) generated by trained DLSTM without the LSF-S filter,
and (c) with the LSF-S filter. The DLSTM consists of three LSTM hidden layers with 512 memory blocks.

TABLE I
ARCHITECTURES OF DNN, HYBRID, AND DSLTM-BASED ACOUSTIC

MODELING METHODS, AND THEIR MODEL PARAMETER SIZES

System Type of
layer(s)

Number of
layers

Number of units
(memory blocks)

Model size

DNN DNN 6 1,024 5.76 M

Hybrid DNN 3 1,024 5.64 M
LSTM 1 512

DLSTM LSTM 3 512 5.92 M

The hybrid system consists of three DNNs and one LSTM layer, connected to the
input and output layers, respectively.

randomly selected. The TFTE was then obtained by combining
the SEW and REW with its pitch period. Finally, a single pitch-
based speech signal was synthesized by the generated LSFs and
TFTE. To enhance spectral clarity, the LSF-S filter was also
applied to the generated LSFs.

B. Objective and Subjective Test Results

In the objective test, distortions in acoustic parameters ob-
tained from the original speech were compared with those
estimated by DNN/LSTMs. The metrics for measuring distor-
tion were log-spectral distance (LSD) for LSFs (dB), LSMD
for SEW (dB), LRMD for REW (dB), root mean square error
(RMSE) for F0 (Hz), and v/uv error rate (%).

Fig. 6 shows the test results for the architectures of various
acoustic modeling methods, with respect to the various amount
of data sets (2, 4, ..., 10 hours). The findings can be analyzed
as follows: (1) In all systems, as the number of training hours
increased, the overall estimation performances gradually im-
proved. (2) The LSTM-based systems had a limitation to model
the temporal sequences when the amount of training data set
was small (2 hours), resulting in relatively large errors in the
LSF and F0 parameters compared to those in the DNN-based
system. (3) With the sufficient amount of training data set (more
than 4 hours), it is clear that all the parameters generated by the
LSTM-based systems had much smaller estimation errors than

those generated by the DNN-based systems. As the accuracy
of these parameters is closely related to the quality of synthe-
sized speech, the perceived quality of synthesized speech from
the proposed system is expected to be better than that from the
baseline system.

To evaluate the perceptual quality of the proposed system,
A-B preference and mean opinion score (MOS) listening tests
were performed.2 In the preference tests, 12 native Korean
listeners were asked to rate the synthesized speech by qual-
ity preference. In total, 20 utterances were randomly selected
from the test set, and then synthesized by the architectures
of the various acoustic modeling methods. To verify vocod-
ing performance, additional DLSTM-based systems using the
STRAIGHT (DLSTM-STRAIGHT) and WORLD (DLSTM-
WORLD) vocoders were also included [10], [11]. Note that
only the excitation parameters (e.g., SEW and REW) were re-
placed with the BAPs; whereas all other parameters were kept
the same as those of the ITFTE vocoder.

Table II shows the preference test results, whose trends can be
analyzed as follows: (1) The perceptual quality of the synthe-
sized speech from the LSTM-based acoustic modeling meth-
ods was significantly better than its DNN-based counterpart
(Tests 1 and 2). This confirms that employing the recurrent layer
effectively captured the temporal nature of the ITFTE param-
eters, enabling the accurate prediction of acoustic features. (2)
The DLSTM-based method showed a higher perceptual quality
than the hybrid method (Test 3), implying that the deeper ar-
chitecture of the LSTM achieved better performance. (3) The
modeling method based on ITFTE excitation provided better
perceptual quality than BAP-based approaches3 (Tests 4 and 5),

2The tests were performed in an acoustically isolated room using a Sennheiser
HD650 headphone.

3In the BAP-based approach, an excitation signal at the synthesis step is
constructed by a weighted sum of a pulse train and white noise depending on the
BAP value. In contrasts, in the ITFTE-based approach, the harmonic and noise
components are represented in the time-frequency domain (SEW and REW,
respectively) and separately parameterized for the DNN/LSTM frameworks. As
the SEW and REW have opposed properties (i.e. strongly correlated along the
time axis and randomly distributed, respectively) it is beneficial to individually
control those parameters to model the statistical characteristics.
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Fig. 6. Objective test results for the architectures of the various acoustic modeling methods, with respect to various amount of training data sets: (a) LSD (dB),
(b) LSMD (dB), (c) LRMD (dB), (d) F0 RMSE (Hz), and (e) v/uv error rate (%).

TABLE II
SUBJECTIVE PREFERENCE TEST RESULTS (%) BETWEEN THE SYNTHESIZED SPEECH SAMPLES

Test index DNN
(5.76
M)

Hybrid
(5.64
M)

DLSTM
(5.92 M)

DLSTM-
STRAIGHT

DLSTM-
WORLD

Neutral p-value

Test 1 11.7 45.8 – – – 42.5 < 10−12

Test 2 7.5 – 51.7 – – 40.8 < 10−21

Test 3 – 17.5 36.3 – – 46.3 < 10−4

Test 4 – – 97.1 1.7 – 1.3 < 10−133

Test 5 – – 90.4 – 3.8 5.8 < 10−84

The systems that achieved significantly better preference at the p < 0.01 level are in bold font.

demonstrating that elaborate reconstruction of the excitation
was also very important in the TTS applications.

The setups for the MOS test were the same as those for
the preference test, except that listeners were asked to make
quality judgments about the synthesized speech using the fol-
lowing possible responses: 1 = Bad, 2 = Poor, 3 = Fair, 4
= Good, 5 = Excellent. The test also evaluated the effec-
tiveness of the proposed spectral enhancement filters, with
speech samples being generated by the DLSTM-based sys-
tem as follows: (1) without any spectral enhancement filter
(DLSTM-a), (2) with an LP-BWE filter only (DLSTM-b), (3)

with an LSF-S filter only (DLSTM-c), and (4) with both filters
(DLSTM).

The test results shown in Fig. 7 confirm the effectiveness
of each system in several ways: (1) The LSTM-based sys-
tems (hybrid and DLSTM) provided quality superior to that
of the DNN-based systems (DNN), as was the case with the
results of the preference test. (2) Employing the LP-BWE fil-
ter improved the perceptual quality of synthesized speech. The
wider confidence interval of the systems without the LP-BWE
filter (DLSTM-a and DLSTM-c compared to DLSTM-b and
DLSTM, respectively) implies that the LP filter contained many
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Fig. 7. Subjective MOS test results with 95% confidence interval for the archi-
tectures of the various acoustic-modeling methods (A/S = analysis/synthesis
case). In the DLSTM-based architecture, four systems were evaluated: with-
out any spectral enhancement filter (DLSTM-a), with an LP-BWE filter only
(DLSTM-b), with an LSF-S filter only (DLSTM-c), and with both filters
(DLSTM).

frames with unnatural spectral peaks, resulting in degradation of
naturalness and inconsistent results. (3) Exploiting the LSF-S
filter significantly improved the perceptual quality, such that
most listeners were satisfied with its quality in terms of spec-
tral clarity. In particular, combining the DNN/LSTM framework
with the LSF-S filter (DNN, hybrid, DLSTM, and DLSTM-c)
outperformed even the analysis/synthesis (A/S) case. This
was because the unwanted artifacts produced by the analy-
sis/synthesis process were statistically excluded during the gen-
eration process, and possible over-smoothing problems were
alleviated by the LSF-S filter. Consequently, the proposed hy-
brid and DLSTM approaches achieved 4.18 and 4.28 MOS,
respectively.

VII. CONCLUSION

This article proposed LSTM-RNN structures for modeling
the acoustic parameters of a high-quality TTS system based
on an ITFTE LPC vocoder. In particular, the research focused
on modeling excitation parameters, i.e., ITFTE, in the LSTM
framework. The intrinsic shortcomings imposed by the finite
window length of a feed-forward DNN framework were shown
to be dramatically alleviated with the new LSTMs. The spec-
tral envelope parameters of the LPC filter were also trained
with the same LSTM frameworks and further enhanced using
LP-BWE and LSF-S filters. Listening tests using the new sys-
tems resulted in much higher measures of perceived quality and
lower objective distortion. In addition, subjective A-B compar-
ison listening tests confirmed that the ITFTE LPC vocoder per-
formed significantly better than the STRAIGHT and WORLD
vocoders when both were trained using the same LSTM-TTS
configuration.

Future research includes reducing the synthesis speed. Al-
though both the hybrid and DLSTM-based systems had better
perceptual quality than the DNN-based system, they took 8 and
20 times longer, respectively, than the DNN-based system. This

may be alleviated by other simplified types of RNN architec-
tures that could not be included in the current framework. Fu-
ture research will further consider how to effectively reduce the
synthesis speed.
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