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ABSTRACT

This paper investigates how the perceptual quality of the syn-
thesized speech is affected by reconstruction errors in exci-
tation signals generated by a deep learning-based statistical
model. In this framework, the excitation signal obtained by an
LPC inverse filter is first decomposed into harmonic and noise
components using an improved time-frequency trajectory ex-
citation (ITFTE) scheme, then they are trained and generated
by a deep long short-term memory (DLSTM)-based speech
synthesis system. By controlling the parametric dimension of
the ITFTE vocoder, we analyze the impact of the harmonic
and noise components to the perceptual quality of the synthe-
sized speech. Both objective and subjective experimental re-
sults confirm that the maximum perceptually allowable spec-
tral distortion for the harmonic spectrum of the generated ex-
citation is ∼0.08 dB. On the other hand, the absolute spectral
distortion in the noise components is meaningless, and only
the spectral envelope is relevant to the perceptual quality.

Index Terms— Speech synthesis, long short-term mem-
ory, improved time-frequency trajectory excitation vocoder

1. INTRODUCTION

Statistical parametric speech synthesis (SPSS) systems have
been greatly advanced when they are combined with a deep
learning-based training process. As centralized networks
such as a feed-forward neural network (FFNN) or a long
short-term memory (LSTM) compactly model the compli-
cated dependencies between input contexts and output acous-
tic features, they not only improve the accuracy of acoustic
models but also alleviate over-smoothing problems in gen-
erated parameters [1, 2]. However, the impact of vocoding
techniques, especially for modeling LPC excitation signals,
remains unclear even though it is undoubtedly a key compo-
nent for synthesizing natural voices. Because parameterizing
the excitation signal has been overly simplified, i.e., a pulse
or noise (PoN) or a mixed excitation [3, 4, 5], it has also been
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difficult to clearly analyze the influence of the excitation on
the quality of the synthesized speech.

In our previous work, we proposed an improved time-
frequency trajectory excitation (ITFTE) vocoder [6], and im-
plemented deep learning-based SPSS systems with it [7, 8, 9].
In the ITFTE vocoder, a pitch-dependent excitation signal is
first obtained by applying an LP inverse filter to an input
speech signal, and then it is represented in the time-frequency
domain. This excitation, i.e., the TFTE signal, is further de-
composed into harmonic and noise components. The slowly
evolving waveform (SEW); obtained by the frequency-
dependent low-pass filtering of the TFTE signal along the
temporal-axis, represents the quasi-periodic/harmonic com-
ponents of the excitation; in contrast, the remaining noise-like
components are represented by the rapidly evolving wave-
form (REW). Because the dimensions of these components
vary depending on the pitch period, they are independently
parameterized via a discrete cosine transform (DCT) before
the training process; they are reconstructed by an inverse
DCT after the generation process [8].

In this paper, we further investigate the relationships be-
tween the perceptual quality and the modeling accuracy of
the excitation signal depending on the parametric dimen-
sion of the ITFTE vocoder. For the analysis, the excitation
signals extracted from the Korean male and US English fe-
male speech database are decomposed into harmonic and
noise components, and then they are trained by a deep LSTM
(DLSTM)-based SPSS framework. By changing the paramet-
ric dimension of the DCT coefficients, the spectral distortions
between the original and the reconstructed excitations are
analyzed in detail. Finally, perceptual listening tests are per-
formed to verify how the generation errors in the harmonic
and noise components affect the quality of the synthesized
speech. Experimental results confirm that even very small
errors in the harmonic excitations are perceptually notice-
able, whereas only the envelope information is important in
the noise excitation. Based on the experimental results, we
obtain the best parametric dimensions for the excitation pa-
rameters of the ITFTE vocoder, which is very important to
design a high-quality speech synthesis system.
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Fig. 1. Time-frequency representation of (a) the excitation
signal (TFTE), (b) the harmonic components (SEW), and (c)
the noise components (REW).

2. BACKGROUND

2.1. Decomposition method for the excitation signal

To effectively represent and model the excitation components,
we adopt an ITFTE-based vocoding technique [6, 7, 8, 9].
In the ITFTE vocoder, a pitch dependent excitation signal
is obtained by the inverse filtering of an input speech sig-
nal with the LP analysis filter, and it is transformed to the
time-frequency domain. A two-dimensional TFTE signal is
used to represent the spectral shape of excitation along the
frequency axis and the evolution of this shape along the time
axis as shown in Fig. 1-(a). To obtain the harmonic excitation
spectrum, i.e., the SEW component shown in Fig. 1-(b), each
frequency component of the TFTE is low-pass filtered along
the time-domain axis. Beyond the cut-off frequency, the re-
maining noise spectrum, i.e., the REW component shown in
Fig. 1-(c), is obtained by subtracting the SEW from the TFTE.

Before being applied to the LSTM training process, both
components are parameterized by a full-band discrete cosine
transform (FB-DCT)-based modeling method [8]. Note that
the SEW and REW dimensions vary depending on the pitch
period; therefore, a fixed dimension must be imposed. In the
analysis step, the SEW and REW magnitude spectra are inde-
pendently transformed into the DCT domain. As the DCT has

good decorrelation and energy compactness properties, most
information is concentrated in the first few coefficients. The
lower K-th order coefficients, defined as FB-DCT-SEW and
FB-DCT-REW coefficients, are used for the DLSTM training
process. By setting the higher-order DCT coefficients to zero
in the synthesis step, the full-band SEW and REW magnitude
spectra are simply reconstructed by applying an inverse DCT.

2.2. DLSTM-based speech synthesis

In the proposed DLSTM-based SPSS system, rich contexts
are first analyzed, and then converted to a sequence of input
linguistic features that contain binary features for categorical
contexts (e.g., phone labels) and numerical features for nu-
merical contexts (e.g., the number of words in a phrase or the
position of the current frame of the current phone). The corre-
sponding output features include the ITFTE and spectral pa-
rameters with their time dynamics [10]. The pairs of input and
output features are then used to train the weights of the DL-
STM by using a backpropagation through time (BPTT) [11].
Note that the DLSTM architecture is built by stacking multi-
ple LSTM layers. The LSTM already has a deep architecture
in time, because its hidden state relates to a function of all pre-
vious hidden states. However, the depth in DLSTMs has an
additional meaning in that the input to the network at a given
time step goes through multiple LSTM layers in addition to
propagation through time [12]. As the inputs go through more
non-linear operations per time step, it is possible to find not
only a sequential nature in time but also the mapping rela-
tionship between the input linguistic and the output acoustic
features.

3. EXPERIMENTS

In this section, we analyze the reconstruction errors in the
DLSTM-generated excitation signal and verify how the har-
monic and noise excitations affect the perceptual quality of
the synthesized speech. From the experimental results, we
propose a high quality speech synthesis system based on the
ITFTE vocoder and DLSTM-training methods.

3.1. Experimental setup

Two phonetically and prosodically rich speech corpora (Ko-
rean and English) were used in our experiment, where each
corpus was recorded by a professional Korean male (KRM)

Table 1. Number of utterances in different sets.
Speaker Training Development Test

KRM 2500 (∼3.2 h) 200 200
USF 5100 (∼6.0 h) 200 200
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Table 2. Subjective preference test results (%) between the synthesized speech samples for the KRM and USF speakers with
respect to different dimensions of FB-DCT-SEW coefficients. The systems that achieved significantly better preference at the
p < 0.01 level are indicated in bold font. The last column represents the LSMD difference between two systems.

Speaker SEW dimension Neutral p-value LSMD
8 16 24 32 40 difference (dB)

KRM

14.6 39.6 45.8 < 10−7 0.18
12.1 57.5 30.4 < 10−19 0.24

17.9 29.2 52.9 0.01 0.06
9.6 33.8 56.6 < 10−8 0.08

17.5 22.9 59.6 0.19 0.02
15.0 29.2 55.8 0.01 0.04

18.3 22.1 59.6 0.36 0.01

USF

18.3 46.3 35.4 < 10−7 0.50
18.3 52.9 28.8 < 10−10 0.77

20.8 42.5 36.7 < 10−4 0.27
22.5 51.2 26.3 < 10−6 0.48

23.8 41.7 34.5 < 10−3 0.21
19.2 46.3 34.5 < 10−6 0.25

27.9 37.1 35.0 0.08 0.04

and a US female (USF) speaker, respectively. The speech sig-
nals were sampled at 16 kHz and quantized with 16 bits. Each
database was divided into training, development, and test sets.
Table 1 shows the number of utterances in each set.

In the analysis step, the frame length was set to 20 ms, and
the spectral and excitation parameters were extracted every 5
ms. The 40-dimensional LP coefficients were extracted and
converted to line spectral frequencies (LSFs). To prevent un-
natural spectral peaks in the LP analysis filter, each coefficient
(ai, i = 1, ..., 40) was multiplied by the bandwidth expansion
factor (0.981i) [9]. On the other hand, the {8, 16, 24, 32, 40}-
dimensional and {4, 8, 16}-dimensional parameterized SEW
and REW coefficients were extracted for the excitation pa-
rameters, respectively. The fundamental frequency (F0), en-
ergy, and v/uv information were also extracted.

In the DLSTM training step, the output feature vectors
comprised all of these parameters together with their time dy-
namics [10]. The corresponding input feature vectors of the
KRM and USF databases included 210- and 346-dimensional
contextual information, consisting of: 203 and 311 binary fea-
tures for categorical linguistic contexts and 7 and 35 numer-
ical features for numerical linguistic contexts, respectively.
Before training, both input and output features were normal-
ized to have zero mean and unit variance. The hidden layers
consisted of three unidirectional LSTM layers with 512 mem-
ory blocks. The weights were randomly initialized and were
trained using the BPTT algorithm. The learning rate was set
to 0.02 for the first 10 epochs, 0.01 for the next 20 epochs, and
0.005 for the remaining epochs. To parallelize and increase
the speed, tens of utterances were randomly selected for each
update and used to update the weights simultaneously. The
training and test procedures were implemented by using the

computational network toolkit (CNTK) [13].

In the synthesis step, the mean vectors of all output feature
vectors were first predicted by the DLSTM, and then a speech
parameter generation (SPG) algorithm was applied to gener-
ate smooth trajectories of acoustic parameters [14]. Because
the DLSTM network structure could not predict the variance
used for the SPG algorithm, we used pre-computed global
variances of output features from all the training data. To re-
construct the SEW and REW, the generated FB-DCT-SEW
and FB-DCT-REW coefficients were converted to SEW and
REW magnitude spectra, respectively. A fixed phase spec-
trum drawn from speech was used for the SEW phase [15],
whereas the REW phase was randomly selected. The TFTE
was then obtained by combining the SEW and REW with its
pitch period. Finally, a single pitch-based speech signal was
synthesized by the generated LSFs and TFTE. To enhance the
spectral clarity, LSF-sharpening [9] and formant-enhancing
[16] filters were also applied.

3.2. Analyzing reconstruction errors of harmonic excita-
tions

This section investigates the impact of the parameter dimen-
sion of the FB-DCT-SEW coefficients on the reconstruction
errors of the harmonic excitation signal. The FB-DCT-SEW
coefficients were extracted from the recorded speech, and
then trained/generated by the DLSTM to reconstruct the
harmonic excitation signals. To measure the reconstruction
errors, we define the log-SEW magnitude distance (LSMD)
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Fig. 2. Average LSMD results for reconstructed SEW mag-
nitude from the FB-DCT-SEW coefficients for (a) the KRM
and (b) the USF speakers.

between the original and the reconstructed spectra as follows:

LSMD [dB] =
1

N

N∑
n=1

√√√√ 1

J

J∑
k=1

(
20 log

usew(n, k)

ûsew(n, k)

)2

,

(1)
where J = P (n)/2 denotes the length of the SEW defined
as a half of the pitch period at the n-th frame; usew(n, k)
and ûsew(n, k) denote the SEW magnitude spectrum at the
k-th frequency-bin extracted from the recorded speech and
reconstructed by FB-DCT-SEW coefficients, respectively.

Fig. 2 shows the LSMD results, for the KRM (upper) and
USF (lower) speakers with respect to different dimensions of
the FB-DCT-SEW coefficients. The findings can be analyzed
as follows: First, the reconstruction errors in the harmonic
spectra of the analysis/synthesis case consistently decreased
as the parametric dimension increased, whereas those of the
trained DLSTM case were saturated at a certain dimension in
both speakers. This implies that we do not have to impose
an infinitely large dimension to train the parameters owing
to the limitation of the model accuracy. Second, the female
speaker having dynamic high-pitched signals contained rela-
tively larger errors than male speaker, mainly because of the
difficulties in the pitch-synchronous analysis/synthesis frame-
work. Applying a high-sampling-rate analysis or weighted
LP approach can alleviate this problem [17, 18], which will
be discussed in our future works.

To further analyze the influence of the harmonic excita-
tion on the quality of the synthesized speech, A-B preference
listening tests were performed. In these tests, 12 native Ko-
rean and 12 native US listeners were asked to make quality
judgments of the synthesized Korean and English utterances,
respectively. Twenty utterances were randomly selected from
the test set from both the KRM and the USF databases. These

(a)

(b)

Fig. 3. Average LRMD results for reconstructed REW mag-
nitude from the FB-DCT-REW coefficients for (a) the KRM
and (b) the USF speakers.

were then synthesized by the generated parameters. In each
experiment, the dimensions of the FB-DCT-SEW coefficients
differ from each other; whereas all other parameters were
kept the same in all systems. Table 2 shows the preference
test results with respect to different dimensions of FB-DCT-
SEW coefficients. The perceptual qualities in both KRM and
USF speakers were also saturated even though the paramet-
ric dimension increased; the results exactly coincided with
the LSMD results. In the tests, the listeners were able to dis-
tinguish the perceptual quality when that the difference was
larger than 0.08 dB. It means the accurate reconstruction of
the harmonic excitation is very important in the perceptual
aspect.

3.3. Analyzing reconstruction errors of noise excitations

As in the harmonic excitation cases, the reconstruction errors
of the noise excitations were measured using the log-REW
magnitude distance (LRMD) between the original and the re-
constructed spectra. Fig. 3 shows the LRMD results for the
KRM (upper) and USF (lower) speakers with respect to differ-
ent dimensions of the FB-DCT-REW coefficients. As shown
in these figures, the LRMDs from the noise spectra are not
affected by the parameter dimensions; in other words, a few
FB-DCT-REW coefficients are sufficient to estimate the noise
envelope. This result was also confirmed by the preference
test results1 shown in Table 3, where the listeners could not
notice the perceptual difference among the different systems.

1The preference test setups were almost same as previous experiments
given in section 3.2, but only the dimensions of the FB-DCT-REW coeffi-
cients differ from each other (all the other parameters were kept same).

674



Table 3. Subjective preference test results (%) between the
synthesized speech samples for the KRM and USF speakers
with respect to different dimensions of FB-DCT-REW coeffi-
cients.

Speaker REW dimension Neutral p-value
4 8 16

KRM
16.3 13.8 69.9 0.48
12.1 17.1 70.8 0.15

15.4 14.2 70.4 0.72

USF
5.0 3.8 91.2 0.51
5.0 4.2 90.8 0.67

4.2 6.7 89.3 0.24

Table 4. MOS test results with 95% confidence interval for
the final configurations of the ITFTE vocoder and DLSTM-
based SPSS systems. For the comparison, the STRAIGHT-
based system was included as a baseline.

Speaker STRAIGHT ITFTE
KRM 3.61±0.18 4.21±0.21
USF 3.54±0.19 3.72±0.19

3.4. ITFTE vocoder and DLSTM-based speech synthesis

In this section, we verify the performance of the proposed
system based on the ITFTE vocoder using the DLSTM train-
ing approach. Based on the experimental results discussed in
the previous section, we chose the 32-dimensional FB-DCT-
SEW and 4-dimensional FB-DCT-REW coefficients to repre-
sent the excitation signal. To evaluate the quality of the pro-
posed system, we performed subjective mean opinion score
(MOS) tests. The setups were the same as for the prefer-
ence tests, except that the listeners were asked to make quality
judgments of the synthesized speech (1: Bad, 2: Poor, 3: Fair,
4: Good, 5: Excellent).

In the test, the impact of excitation components was
compared with an additional DLSTM-based system using a
STRAIGHT vocoder [19]. Note that only the excitation pa-
rameters (e.g., SEW and REW) were replaced with the band
aperiodicities (BAPs); whereas all the other parameters were
kept the same as those of the ITFTE vocoder. The results of
the MOS test (Table 4) show that the proposed system pro-
vided better perceptual quality than the BAP-based approach,
which implies decomposing the SEW/REW is beneficial to
improve the modeling accuracy of the excitation signals.
However, as discussed in section 3.2, larger reconstruction
errors in the female excitations resulted in relatively worse
perceptual quality than that of the male speaker. This will be
further analyzed in our future works to improve the vocoding
technique for the high-pitched excitation signals.

4. CONCLUSIONS

In this paper, we investigated how the perceptual quality
of synthesized speech was affected by reconstruction er-
rors in excitation signals. The excitation signals extracted
from the speech database were decomposed into the har-
monic and noise components and then trained by the deep
DLSTM-based SPSS framework. By changing the paramet-
ric dimension of each component, the reconstruction errors
were analyzed in detail. Perceptual listening tests were also
performed, and the results of the same confirmed that even
very small errors in the harmonic excitations were perceptu-
ally noticeable, whereas only the envelope information was
important in noise excitations. Finally, we successfully im-
plemented a high-quality speech synthesis framework based
on the ITFTE vocoder and the DLSTM-based statistical train-
ing process.
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