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ABSTRACT
This paper proposes a novel noise compensation algorithm
for a glottal excitation model in a deep learning (DL)-based
speech synthesis system. To generate high-quality speech
synthesis outputs, the balance between harmonic and noise
components of the glottal excitation signal should be well-
represented by the DL network. However, it is hard to accu-
rately model the noise component because the DL training
process inevitably results in statistically smoothed outputs;
thus, it is essential to introduce an additional noise compensa-
tion process. We propose a modeling-by-generation structure-
based noise compensation method that the missing noise com-
ponent in the generated glottal signal is directly extracted and
parameterized during the entire training process. By model-
ing the noise component using the additional DL network, the
proposed system successfully compensates the missing noise
component. Objective and subjective test results confirm that
the synthesized speech with the proposed noise compensation
method is superior to that with conventional methods.

Index Terms— Text-to-speech, speech synthesis, glottal
vocoder, glottal excitation model

1. INTRODUCTION

The emergence of the glottal excitation model with the deep
learning (DL)-based speech synthesis frameworks has sig-
nificantly improved the quality of parametric speech synthe-
sis systems [1–4]. In the glottal vocoding system, a pitch-
dependent excitation signal is first obtained by applying a
linear prediction (LP) inverse filter to an input speech sig-
nal [5, 6], and then the temporal variation of the excitation
signal is trained and generated via DL techniques. The syn-
thetic speech quality of the glottal excitation model is better
than that of conventional band-aperiodicity (BAP)-based ap-
proaches [7], however, its synthesized speech is often unnat-
urally buzzy because of overly smoothed glottal signals.

To address the aforementioned problem, various types of
noise compensation algorithms have been introduced. For ex-
ample, a harmonic-to-noise ratio (HNR) of the generated glot-
tal signal was compared with that of the original glottal signal,
and then the noise level was adjusted to have the same HNR
values [8]. Alternatively, Airaksinen et al [9] estimated the
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noise component by subtracting the median filter (MF) out-
put from the original glottal signal with the assumption that
the smoothed glottal output caused by the training process
can be simulated with an MF in the analysis step . This noise
component was also trained together with the glottal signals
and added to the generated glottal signal in the synthesis step.

Although both methods are somewhat advantageous in
terms of improving the naturalness of the synthesized speech,
the inaccurate definition of the missing noise component often
produces unwanted noisy artifacts. In the case of HNR-based
method, the measurement errors of HNR in both the train-
ing and synthesis stages cause inappropriate compensation of
missing noise component. In the MF-based approach, there is
a mismatch in the smoothing effects that occur with the MF
and the training process. Therefore, the generated speech with
the conventional glottal vocoding systems tends to be buzzy
or noisy when the compensated noise-level is too low or high,
respectively, thus, the noise compensation method in the glot-
tal vocoding framework should be carefully considered.

In this paper, we propose a modeling-by-generation
(MbG)-structured noise compensation method that directly
models the missing noise component during the entire train-
ing process. By considering the fact that the generated glottal
signal mainly represents the harmonic-like component of the
glottal excitation, we define the noise component as the dif-
ference between the original glottal signal obtained from the
recorded speech and the smoothed glottal signal generated by
the trained model. To improve modeling accuracy, the noise
component is first parameterized by line spectral frequencies
(LSFs) and pulse-wise HNRs to represent its spectral enve-
lope and pulse-wise energy, respectively. Those parameters
are then trained/generated by an additional DL network, i.e.,
a noise model, and used to reconstruct the noise compo-
nent in the synthesis stage. Finally, the noise component is
phase-aligned and added to the generated glottal signal.

2. GLOTTAL VOCODER AND PARAMETRIC
SPEECH SYNTHESIS SYSTEM

The left part of Fig. 1 depicts the conventional glottal vocod-
ing system. The glottal feature (GF) vector is composed of
a time sequence of the glottal excitation signal1; whereas

1Before training the glottal model, the 2-pitch-period windowed glottal
pulses, having glottal closure instants (GCI) at the middle and at both ends,
are centered and zero-padded to have fixed-dimensional network output [2].
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Fig. 1: Block diagram of the speech synthesis system using
the glottal vocoder with MbG-based noise compensation.

the acoustic feature (AF) vectors consist of the speech pa-
rameters including: (1) quasi-closed phase (QCP) inverse
filtering-based LSFs representing the vocal tract (VT) system
(LSF–VT) [6], (2) log-fundamental frequency (logF0), (3)
frame-level energy (Erg), (4) voicing information (VUV),
and (5) low-order vocal source LSFs (LSF–VS) representing
the spectral tilt of the glottal excitation signal.

The AFs also include additional parameters that are
needed to compensate for the noise portion of the glottal
signal, which varies depending on the type of noise com-
pensation method. In the HNR-based noise compensation
approach (HNR–NC), the HNRs of several frequency-bands
are used for the additional noise-related features. In the MF-
based method (MF–NC), the noise component is defined by
the residual signal of the MF output, then parameterized into
noise LSFs and energy terms to represent the spectral shape
and gain of the noise component, respectively.

In the synthesis stage, the 2 pitch period glottal pulses are
generated by the trained glottal model and they are weighted
with a cosine window. The missing noise component esti-
mated by the corresponding noise compensation approach is
then added to the generated glottal pulse. In the HNR–NC
approach, the noise component is determined by the gap of
HNRs extracted from the glottal pulse and predicted by the
acoustic model. In the MF–NC approach, the noise compo-
nent is reconstructed by applying spectral shaping with the

noise LSFs and adjusting the gain to uniformly distributed
white noise signals. After performing the noise compensa-
tion process, the spectral tilt of the glottal pulse is adjusted
to reduce the high-frequency loss that occurs in the glottal
pulse generation process. Finally, the glottal excitation signal
is constructed by applying a pitch-synchronous overlap-add
method, and a single frame of speech signal is synthesized
by filtering the glottal excitation signal through the VT filter
reconstructed by the generated LSF–VT coefficients.

3. MODELING-BY-GENERATION-BASED NOISE
COMPENSATION METHOD

Even though previous studies indicate the technical poten-
tiality of introducing a glottal vocoding synthesis system, it
is still challenging to derive the maximum advantages from
them because the noise compensation method is typically de-
signed with a heuristic definition. In this section, we propose
an MbG-structured noise compensation method that presents
a very effective modeling performance for the missing noise
component. The right part of Fig. 1 illustrates the proposed
glottal vocoding system with the MbG-structured noise com-
pensation method.

In the training stage, the missing noise component is di-
rectly obtained by subtracting the generated GF from the orig-
inal GF estimated by the recorded speech. This component is
parameterized into noise features (NFs), and their statistical
characteristics are trained by the DL-based noise model. In
synthesis stage, the noise component is synthesized and com-
pensated to generate glottal pulse. The detailed descriptions
are introduced below.

3.1. Training stage

Let us assume that the original glottal pulse, go, contains both
harmonic and noise components, and the generated glottal
pulse, gg , only represents noise-removed harmonic compo-
nent as follows:

go “ h` n, (1)

gg “ αh, (2)

where the vector sequence h and n denote the harmonic and
noise components, respectively, and α denotes a scaling factor
to compensate the effect of normalization processes before
training and after generating the glottal signals. By assuming
that the harmonic and noise components are uncorrelated as
follows:

nTh “ 0, (3)

the scaling factor α can be estimated by calculating the cross-
correlation between the original and generated glottal pulses
as follows:

α “ gT
g gg{g

T
o gg. (4)

Using Eqs. (1)–(4), the noise component can be extracted as
follows:

n “ go ´
1

α
gg. (5)
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To improve modeling accuracy, the noise component in
Eq. (5) is parameterized by LSFs and a pulse-wise HNR to
concentrate the spectral information and gain information, re-
spectively, and then it is used to compose the NF vectors. The
pulse-wise HNR is calculated by the energy ratio between
harmonic and noise components as follows:

HNR “
Erh2s

Ern2s
. (6)

3.2. Synthesis stage

In synthesis stage, a sequence of random noise is generated,
and its frequency response, Npωq, is shaped to have a mag-
nitude response corresponding to the target spectrum as fol-
lows:

pNpωq “
Htpωq

Hnpωq
¨Npωq, (7)

whereHnpωq denotes an autoregressive (AR) spectrum of the
random noise sequence; Htpωq denotes the target AR spec-
trum obtained by the generated noise LSFs; pNpωq denotes the
shape-adjusted noise spectrum. Additionally, its time-domain
sequence, pn, is tapered by the cosine window to match the
windowing process in the GF extraction as described in Sec-
tion 2. Then, the noise gain is adjusted to be matched with the
generated pulse-wise HNR as follows:

rn “

c

HNRn

HNRt
¨ pnw, (8)

where HNRn and HNRt denote the HNR extracted from
the generated glottal pulse and that generated by the trained
noise model, respectively; pnw and rn denote the tapered noise
sequence and the target noise component, respectively. To
prevent a critical phase mismatch in the generated glottal sig-
nal, a high-pass filter with a 2-kHz cut-off frequency is also
applied to the target noise component [9].

Note that the noise parametrization and synthesis meth-
ods are similar to those of the MF–NC approach. However,
since the definition and parameterization processes of the
noise component fully depend on the glottal pulses of the
original and generated ones, the noise loss modeling based on
the proposed approach is highly adaptive to the glottal model
compared to the one used in the MF-based approach. Thus,
the noise component obtained by the noise model is special-
ized to capture a stochastic variation of the glottal pulse being
lost in the glottal modeling process.

4. EXPERIMENTS

4.1. Speech database and features

A phonetically and prosodically balanced speech corpus
recorded by a Korean male professional speaker was used for
the experiments. The speech signals were sampled at 16 kHz,
and each sample was quantized by 16 bits. In total, 2,500
utterances (about 3 hours) were used for training, 200 utter-
ances were used for validation, and another 200 utterances

Table 1. Speech features and their dimensions including ∆
and ∆∆ values for acoustic, glottal and noise models.

DL models Output features dim. ∆ dim.

Acoustic model

LSF–VT 30 90
logF0 1 3
Erg 1 3

VUV 1 1
LSF–VS 10 30

Glottal model Glottal feature 400 400

Noise model Noise LSFs 15 45
Pulse-wise HNR 1 3

Table 2. Network architectures.

Type of layers
Acoustic

model
Glottal
model

Noise
model

Input LFs LFs LFs
FF (units ˆ layers) 1024 ˆ 2 512 ˆ 3 512 ˆ 2

LSTM (units ˆ layers) 512 ˆ 2 256 ˆ 1 256 ˆ 1
Output AFs GF NFs

that were not included in either the training or validation steps
were used for testing.

In the analysis step, the frame length was set to 20 ms,
and the AFs, GF, and NFs were extracted every 5 ms. Ta-
ble 1 summarizes the specification of all the features used in
the experiments. The 30-dimensional LSF–VT [6], log-
fundamental frequency (logF0) [10], frame-level energy
(Erg), voicing information (VUV), and 10-dimensional LSF–
VS were extracted for the AFs. The 400-dimensional time
sequence of the glottal signal was used as the GF; whereas the
15-dimensional noise LSFs and a 1-dimensional pulse-wise
HNR were extracted for the NFs.

4.2. DL-based model training and synthesis

Table 2 summarizes the network architectures used in the ex-
periments. In the acoustic model, the AFs with their time-
dynamics were composed of 142-dimensional output vectors
[11]. The corresponding input feature vectors included 210-
dimensional contextual information consisting of 203 binary
features for categorical linguistic contexts and 7 numerical
features for numerical linguistic contexts. The hidden layers
consisted of 2 feed-forward (FF) layers with 1,024 units and
2 long short-term memory (LSTM) layers with 512 memory
blocks. The hyperbolic tangent and linear activation functions
were used in the hidden and output layers, respectively. The
weights were first initialized by using a Xavier initializer [12],
and then trained by using a back-propagation through time
procedure with an Adam optimizer [13, 14].

In the glottal model, the linguistic input vectors were same
as those of the acoustic model2; whereas the 400-dimensional

2In the glottal model, the linguistic features were used as the input vector
to prevent the possible training mismatch or error propagation when employ-
ing the generated AF as an input [3, 15].
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Table 3. LSD (dB) results for the architectures of the various
noise compensation algorithms.

HNR–NC MF–NC MbG
8.55 7.93 7.61

GF were composed of the output vectors. There were 3 FF
layers with 512 units and a single LSTM layer with 256 mem-
ory cells. The initialization and training methods were the
same as those of the acoustic model.

The training procedures of the noise model were also sim-
ilar with those of the acoustic and glottal models, but the 48-
dimensional NFs were composed of the output vectors. The
hidden layers consisted of 2 FF layers with 512 units and a
single LSTM layer with 256 memory cells. For all methods,
the training and test procedures were implemented using the
TensorFlow framework [16].

In the synthesis step, the mean vectors of all the output
features were predicted by the trained models. With pre-
computed global variances of output features from all the
training data [17], a speech parameter generation algorithm
was applied to generate a smooth trajectory of acoustic and
noise features [18]. To synthesize the glottal excitation sig-
nal, the two pitch period glottal pulses were first synthesized
by the generated GF and logF0, and then the noise compen-
sation and spectral tilt compensation modules were applied
to the glottal pulse. By pitch-synchronously constructing
the glottal excitation signal, a speech signal was synthesized
with the generated LSF–VT and the glottal excitation signals.
To enhance spectral clarity, LSF-sharpening and formant en-
hancement filters were also applied to the generated spectral
parameters [19, 20].

4.3. Objective and subjective evaluation results

To objectively evaluate the proposed noise compensation
method, i.e., MbG, a log-spectral distance (LSD) of energy-
normalized glottal pulses between the original and com-
pensated ones were measured. The additional two glottal
vocoding systems with different noise compensation methods
such as HNR–NC and MF–NC were also included.

For the HNR–NC approach, the 5-dimensional frequency-
band-wise HNRs were used. For the MF–NC approach, the
noise component was extracted using a 4-ms median filter
and a 2-kHz high-pass filter, and was parameterized into 15-
dimensional noise LSFs and energy terms. In total, 142 and
172-dimensional AFs were used in the HNR–NC and MF–
NC approaches, respectively.

The LSD results shown in Table 3 verify that the compen-
sated glottal pulse with the proposed method had significantly
smaller errors than those with conventional methods. As the
reconstruction accuracy of the glottal signal is closely related
to the quality of synthesized speech, the perceived quality of
synthesized speech from the proposed system is expected to
be better than that from the baseline systems.

To evaluate the perceptual quality of the proposed system,
an A-B preference test and a mean opinion score (MOS) lis-
tening tests were performed. In each comparison of the pref-

Table 4. Subjective preference test results (%) between the
speech samples. The systems that achieved significantly
better preference at the p ă 0.01 level are in bold font.

STR HNR–NC MF–NC MbG No prefer. p-value

– 3.3 87.5 – 9.2 ă 10´79

– – 5.4 47.1 47.5 ă 10´21

25.8 – 64.6 – 9.6 ă 10´10

17.9 – – 75.4 6.7 ă 10´23

72.1 10.0 – – 17.9 ă 10´34

– 1.7 – 93.3 5.9 ă 10´113

Table 5. Subjective MOS test results with a 95% confidence
interval for the architectures of the various noise

compensation algorithms.

STR HNR–NC MF–NC MbG

2.90 ˘ 0.10 2.16 ˘ 0.13 3.20 ˘ 0.13 3.72 ˘ 0.11

erence tests, 12 native Korean listeners were asked to rate the
quality preference using randomly selected 20 synthesized ut-
terances from test set. In addition to HNR–NC and MF–NC,
the STRAIGHT-based synthesis system, i.e., STR, was also
included as a baseline system [7]. The preference test results
shown in Table 4 show that the listeners preferred the pro-
posed system over the conventional systems.

The setups for the MOS test were the same as those for
the preference test, except that listeners were asked to make
quality judgments about the synthesized speech using the fol-
lowing possible responses: 1 = Bad, 2 = Poor, 3 = Fair, 4 =
Good, 5 = Excellent. Table 5 shows the MOS test results,
which confirms that the proposed system provides much bet-
ter perceptual quality than the baseline systems.

5. CONCLUSION

In this paper, we have introduced an MbG-structured noise
compensation method for the glottal vocoding speech synthe-
sis system. By directly modeling the smoothing impact to the
glottal excitation signal throughout the entire training process,
the proposed system successfully compensated the character-
istic of noise component caused by statistical averaging in the
training process. The experimental results verified that the
proposed system was superior to conventional glottal vocod-
ing systems, both objectively and subjectively.

Relationship to prior work - In the conventional glottal
vocoding systems, the noise components that are needed to be
compensated in the speech synthesis stage were heuristically
determined by adopting an HNR or residual signal through an
MF process. However, they were inappropriate for accurately
compensating noise level, so the synthetic sound was often
too buzzy or noisy. By directly modeling the missing noise
component from the difference between the glottal pulses of
the original and generated ones and by including it in the
entire training process, we were able to construct a glottal
model-adaptive noise compensation method.
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