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Abstract
This paper proposes an effective probability density distillation
(PDD) algorithm for WaveNet-based parallel waveform genera-
tion (PWG) systems. Recently proposed teacher-student frame-
works in the PWG system have successfully achieved a real-
time generation of speech signals. However, the difficulties
optimizing the PDD criteria without auxiliary losses result in
quality degradation of synthesized speech. To generate more
natural speech signals within the teacher-student framework, we
propose a novel optimization criterion based on generative ad-
versarial networks (GANs). In the proposed method, the in-
verse autoregressive flow-based student model is incorporated
as a generator in the GAN framework, and jointly optimized
by the PDD mechanism with the proposed adversarial learn-
ing method. As this process encourages the student to model
the distribution of realistic speech waveform, the perceptual
quality of the synthesized speech becomes much more natu-
ral. Our experimental results verify that the PWG systems with
the proposed method outperform both those using conventional
approaches, and also autoregressive generation systems with a
well-trained teacher WaveNet.
Index Terms: WaveNet, parallel WaveNet, neural vocoder,
probability density distillation, generative adversarial network.

1. Introduction
Generative models using WaveNet have significantly improved
the quality of synthetic speech signals [1]. In this kind of sys-
tem, the time domain speech signal is represented as a sequence
of discrete symbols, and its distribution is autoregressively
modeled by stacked convolutional neural networks. By appro-
priately conditioning the acoustic features to the input, WaveNet
has also been successfully adopted in a neural vocoder structure
for statistical parametric speech synthesis systems [2–5], and
end-to-end speech synthesis systems [6–10].

However, compared with traditional parametric vocoders
[11–14], the WaveNet’s inference speed is inherently slow ow-
ing to its autoregressive model structure. To address this prob-
lem, teacher-student framework-based fast waveform genera-
tion methods (e.g., parallel WaveNet and ClariNet) have been
proposed [15, 16]. In this framework, a bridge defined as prob-
ability density distillation (PDD) transfers the knowledge of a
well-trained autoregressive teacher WaveNet to an inverse au-
toregressive flow (IAF)-based student model. As the architec-
ture of feedforward IAFs enables transforming a simple noise
signal to a complex distribution in parallel [17], the IAF student
can generate speech waveform within a real-time speed.

Typically, conventional PDD methods employ a minimiza-
tion criterion based on the Kullback-Leibler divergence (KLD)
between the output distributions of the student and teacher net-
works [15]. However, as the objective of this criterion is to
guide the student model to learn the teacher’s distribution, the

best achievable quality of the distilled student cannot be better
than that of the teacher network. Although combining auxil-
iary losses (e.g., a frame-level power loss between recorded and
synthetic speech signals) to the KLD criterion helps generating
more natural speech segments [16], it often suffers from unex-
pected artifacts in the synthesis step due to the difficulties to
converge the student model.

To further improve synthetic speech quality of WaveNet-
based parallel waveform generation (PWG) systems, we pro-
pose a generalized optimization criterion for training the
IAF students by incorporating generative adversarial networks
(GANs) [18]. In the proposed method, a teacher WaveNet is
first obtained via maximum likelihood estimation, and an IAF
student is incorporated as a generator within the GAN frame-
work. Finally, all the weights in the student model are jointly
optimized by the PDD mechanism with an adversarial learn-
ing method. Because the adversarial training encourages the
IAF student to learn the distribution of realistic speech wave-
form, the perceptual quality of synthesized speech becomes
much more natural. Furthermore, the joint optimization with
conventional distillations addresses the difficulties of feedfor-
ward GAN to model the long term dependency of the speech
signal. Consequently, the performance of the distilled student is
effectively improved.

We investigate the effectiveness of the proposed method by
conducting subjective evaluations with the PWG systems. The
experimental results show that the proposed adversarial training
method provides much better perceptual quality than conven-
tional approaches while maintaining the equivalent generation
speed; moreover, outperforms even the autoregressive teacher
WaveNet.

2. Related work
The idea of using PWG methods in the WaveNet framework
is not new. By minimizing the KLD between output distri-
butions of the teacher and student, parallel WaveNet success-
fully achieves to distill the IAF student model from the teacher
WaveNet model [15]. By combining regularized KLD distilla-
tion with frame-level STFT loss, ClariNet has proposed an ef-
fective and stable training criterion [16]. As the STFT-based
loss function is designed to guide the IAF student to learn
the time-frequency characteristics of speech signals, its output
quality has been further improved.

Meanwhile, GANs have attracted a great deal of attention
in the speech signal processing community thanks to their ca-
pabilities to learn the distribution of realistic speech signals via
adversarial training. The performance of the speech synthe-
sis systems has been also significantly improved by implanting
the GAN structure to the acoustic models [19–22], the post-
filters [23], and the glottal excitations [24, 25].

Our aim is to incorporate the adversarial learning method
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Figure 1: An illustration of the distillation process for parallel waveform generation, where our proposed teacher-student framework
adds an adversarial training process to the conventional methods (upper only).

into the teacher-student training process to achieve high-quality
PWG of speech signals. Although a prior work in using GAN
structure in the PWG application has been undertaken [26], our
research differs from this study: The GAN in the prior work was
not used to distill the student model from the teacher WaveNet,
but used to adapt an already-trained student model to a specific
speaker (e.g., a speaker adaptation task). On the other hand, we
focus on the effect of the adversarial learning method in training
the student model itself. We propose a generalized optimiza-
tion criterion by combining conventional KLD distillation with
frame-level STFT loss and the proposed GAN-based adversar-
ial loss.

In addition to above, our experiments seek to verify the su-
perior performance of the proposed method over conventional
PWG systems. Furthermore, thanks to the GAN’s good capa-
bility to represent the nature of speech signals, the quality of
the synthesized speech from the student model becomes more
natural than even that from the teacher WaveNet.

3. Probability density distillation
3.1. KLD distillation

Conventional teacher-student framework-based systems em-
ploy the KLD-based PDD method to transfer the knowledge
of a well-trained autoregressive teacher WaveNet to the target
IAF student model [15, 16]. As the simplified architecture of
the student model enables sampling the speech signal in paral-
lel, the generation speed becomes much faster than that of the
autoregressive teacher.

The upper part of Figure 1 depicts a distillation process of
the conventional teacher-student framework. During the train-
ing process, the student model first transforms the input random
variable z to a waveform sample x̂, and is evaluated by the
corresponding well-trained teacher WaveNet. The entire net-
work of the student model is then optimized to represent the
teacher’s distribution by minimizing the regularized KLD be-
tween the output distributions of the teacher and the student as
follows [16]:

LKLD(q, p) = Ez,x̂

[
T∑

t=1

KLreg(q(x̂t|z<t) ‖ p(x̂t|x̂<t))

]
,

(1)
where q(x̂) ∼ N(µq, σq) and p(x̂) ∼ N(µp, σp) denote the
output distributions of the student and teacher, respectively.

3.2. STFT-based auxiliary loss

In addition to KLD minimization, it is well known that incorpo-
rating additional auxiliary losses using the ground truth dataset
is advantageous to distill the student model well [27]. Note that
synthesized speech often contains undesirable artifacts (e.g.,
whispering voices) when the student IAF is trained with KLD
loss alone [16].

To address the aforementioned problem, loss functions that
are correlated with the perceptual audio quality should be used
to train the student model [28]. In this paper, we adapt a
frame-level auxiliary loss between the original and the gener-
ated speech samples as follows:

LAUX(q) = Ex,x̂ [LSC(x, x̂) + λMAGLMAG(x, x̂)] , (2)

where x and x̂ denote the target and the estimated speech
signal; λMAG denotes a weight coefficient to balance two
losses, spectral convergence (LSC) and log STFT magnitude
loss (LMAG), which is defined as follows [28]:

LSC(x, x̂) =
‖ |STFT(x)| − |STFT(x̂)| ‖F

‖ |STFT(x)| ‖F
, (3)

LMAG(x, x̂) =‖ log|STFT(x)| − log|STFT(x̂)| ‖1, (4)
where ‖ · ‖F and ‖ · ‖1 denote the Frobenius and L1 norms, re-
spectively; |STFT(·)| denotes the STFT magnitudes. Because
the spectral convergence loss emphasizes spectral peaks and the
log STFT magnitude loss accurately fits spectral valleys [28],
using a linear combination of both losses is helpful to effec-
tively distill the student from the teacher WaveNet.

4. Probability density distillation with
generative adversarial networks

The KLD distillation combined with the STFT auxiliary loss
has shown the feasibility to enhance the distillation efficiency.
To further improve the performance of the student model, we
propose to incorporate GAN-based loss into the teacher-student
framework.

Figure 1 shows the proposed distillation process. The stu-
dent model is incorporated as a generator and jointly optimized
by minimizing the adversarial loss (LADV) along with the KLD
loss (LKLD) and auxiliary loss (LAUX) as follows:

LG(q, p,D) = λkldLKLD(q, p) + λauxLAUX(q)

+ λadvLADV(q,D), (5)
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where λkld, λaux and λadv denote the normalized weight co-
efficients for the KLD, STFT auxiliary, and adversarial losses,
respectively1. The adversarial loss, which represents how the
student model learns the speech distribution from the discrimi-
nator, is defined as follows:

LADV(q,D) = Ex̂∼q

[
(1−D(x̂))2

]
, (6)

where D denotes the discriminator2. During the training pro-
cess, the student model tries to deceive the discriminator into
recognizing the generated samples as real (D(x̂)→ 1). On the
other hand, the discriminator is trained to correctly classify the
generated sample to fake while classifying the ground truth to
real (D(x)→ 1) using the following optimization criterion:

LD(q,D) = Ex∼pdata [(1−D(x))2] + Ex̂∼q[D(x̂)2], (7)

where pdata denotes the distribution of the speech signals.
The entire training process encourages the student model to

learn the distribution of the realistic speech waveform, which
enables to generate more natural speech. Furthermore, the joint
optimization with conventional distillations can address the lim-
itations of feedforward GAN to capture the sample-level cor-
relations of the speech signal [25]. Consequently, the percep-
tual quality of synthesized speech generated by the proposed
method is effectively improved.

5. Experiments
5.1. Experimental setup

To investigate the effectiveness of the proposed method, we
trained student models using the following four different op-
timization criteria:

• AX: Auxiliary loss.

• AXAD: Auxiliary and adversarial losses.

• KLAX: KLD and auxiliary losses.

• KLAXAD: KLD, auxiliary and adversarial losses.

In the experiments, we used a phonetically and prosaically
balanced speech corpus recorded by a female professional
Japanese speaker. The speech signals were sampled at 24 kHz,
and each sample was quantized by 16 bits. In total, 3,299 utter-
ances (7.34 hours) were used for training, 412 utterances (0.89
hours) were used for development, and another 413 utterances
(0.92 hours) not included in either the training or development
steps were used for evaluation. The leading and trailing silences
in the speech signal were trimmed using a pre-processor, and
80-band log-mel spectrograms were extracted for composing
the conditioning feature vectors. The frame and shift lengths
were set to 25 ms and 5 ms, respectively. Before training, the
conditional feature vectors were normalized to have zero mean
and unit variance. All the models and experiments were imple-
mented using NAVER smart machine learning (NSML) plat-
form [31].

The teacher model was Gaussian autoregressive WaveNet
[16], which consisted of 24 layers of dilated residual convolu-
tion blocks with four exponentially increasing dilation cycles.

1 If the weight λkld is zero, the optimization criterion is equivalent
to adversarial training methods [25,26]. On the other hand, if the weight
λadv is zero, it is equivalent to conventional PDD with the STFT aux-
iliary loss [16].

2 This framework adopts a least-squares GANs thanks to its stability
during the training process [24, 26, 29, 30].

Table 1: Normalized weight coefficients for training the differ-
ent IAF student models.

Method λkld λaux λadv

AX - 1.00 -
AXAD - 0.33 0.67
KLAX 0.09 0.91 -
KLAXAD 0.03 0.32 0.65

The number of residual channels, skip channels were 128 and
convolution filter size was 3. The conditioning features were
upsampled by nearest neighbor upsampling followed by 2-D
convolutions for interpolation [32]. The upsampling was split
into five modules. The scales were [2, 2, 2, 3, 5]. The kernel
sizes for the 2-D convolutions were set to 2s + 1, where s de-
notes the upsampling scale. The teacher model was trained for
1 M steps with an Adam optimizer [33]. The initial learning
rate was set to 0.001, and it was reduced by half for every 200
K steps. The minibatch size was eight and the length of each
audio clip was 12 K time samples.

The student models were based on Gaussian IAFs [16],
each consisted of six flows in our settings. Each flow was pa-
rameterized by a WaveNet that had ten layers of dilated resid-
ual convolution blocks with an exponentially increasing dilation
cycle. The number of residual channels, skip channels was 64
and filter size was 3. The architecture of the upsampling net-
work was the same as that of the teacher, and all the weights
were initialized by the teacher’s. The IAF student models were
trained for 500 K steps with an Adam optimizer. The normal-
ized weight coefficients (i.e., λkld, λaux and λadv) for training
the different IAF student models are summarized in Table 1.
The initial learning rate was set to 0.0001, and it was reduced
by half for every 200 K steps. The minibatch size was eight
and the length of each audio clip was 20.4 K time samples. The
STFT auxiliary loss was computed with a 25 ms Hanning win-
dow with 5 ms shift. The weight λMAG in Equation 2 was set to
1/(Nframe × Ffreq), where Nframe and Ffreq denote the num-
ber of time frames and frequency bins of the STFT magnitude,
respectively. The KLD loss was computed as the same way as
ClariNet [16].

In the proposed adversarial learning method, the discrimi-
nator consisted of ten layers of non-causal dilated 1-D convo-
lutions interleaved with leaky ReLU activation function (α =
0.2). The strides for the 1-D convolutions were set to 1 and
linearly increasing dilations were applied for the 1-D convo-
lutions3 starting from 1 to 8 except for the first and last lay-
ers. Scalar predictions per-time step were done to better cap-
ture sample-level detailed differences between generated and
real samples, and then averaged to compute the discriminator
loss. The number of channels and filter size were 64 and 3, re-
spectively. The conditioning feature vectors were not used for
the discriminator. Because it is impossible to optimize the dis-
criminator directly at the beginning of the training process, the
student model as a generator was trained without the adversarial
loss during the first 200 K steps. After warmup, the discrimina-
tor was sequentially optimized for 50 K with an Adam optimizer
and finally entire networks were jointly trained via the adversar-
ial learning method for the remaining 300 K steps. The initial
learning rate for the discriminator was set to 0.00005, and it
was reduced by half for every 200 K steps.

3 Our preliminary experiments verified that the linearly increasing
dilations performed better than the exponentially increasing receptive
fields for the discriminator.
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Figure 2: The MOS results with 95 % confidence intervals.

5.2. Experiment results

To evaluate the perceptual quality of the proposed system, mean
opinion score (MOS)4 tests were performed. Fourteen native
Japanese speakers were asked to make quality judgments about
the synthesized speech samples using the following five possi-
ble responses: 1 = Bad; 2 = Poor; 3 = Fair; 4 = Good; and
5 = Excellent. In total, 20 utterances were randomly selected
from the test set and were then synthesized using the different
generation models.

Figure 2 shows the MOS test results with respect to dif-
ferent generation models. The findings can be summarized as
follows: (1) The IAF student trained only with the auxiliary
loss (i.e., AX) performed worst. Although adding the adversar-
ial loss (i.e., AXAD) proved advantageous to improve the per-
ceptual quality of the synthesized speech, it still scored poorly
since it was challenging to capture sample-level correlations of
the speech signal without the KLD-based distillation criterion.
This can be confirmed by the test results for the KLAX sys-
tem, where the perceptual quality was significantly improved
by using the KLD distillation criterion with the auxiliary loss.
(2) Among the IAF students, the proposed adversarial training
method (i.e., KLAXAD) achieved the best quality. In particular,
the proposed system outperformed even the teacher WaveNet
model. This was because the adversarial training guided the
IAF student to learn the distribution of realistic speech wave-
form. Consequently, the proposed system with the adversarial
training method achieved 4.186 MOS.

To further verify the effect of the proposed method, we
designed additional experiments by refining the normalized
weight coefficients of the proposed system (i.e., λkld, λaux and
λadv in the KLAXAD system). Note that the previous listening
test results verified that it is necessary to use the KLD-based dis-
tillation criterion during the training process. However, the best
achievable quality of the distilled student model can be limited
to the teacher model if the weight for KLD-based distillation
(i.e., λkld) is too large. Therefore, when the IAF student model
starts to converge, it is recommended to decrease the λkld value.

Figure 3 depicts the A/B/X preference test results5. Al-
though the normalized weight coefficients were empirically
modified (λkld, λaux, and λadv were set to zero, 0.33, and 0.67,
respectively), the results confirm that weight-refined system
(KLAXAD∗) provided better perceptual quality than the one

4Generated audio samples are available at the following URL:
https://r9y9.github.io/demos/projects/
interspeech2019/

5The setups for the test were the same as for the MOS tests except
that listeners were asked to rate the quality preference of the synthesized
speech samples.

NEUTRAL
46.1 %

KLAXAD
23.2 %

KLAXAD*
30.7 %

Figure 3: The test results of A/B/X preference comparison with
two proposed methods including the baseline (KLAXAD) and
its weight-refined version (KLAXAD∗).

originally proposed (KLAXAD). This implies that, when the
student model started to converge, forcing the entire networks
to be optimized toward the ground truth speech data rather than
the teacher model was advantageous to generate more natural
speech signal. Making the normalized weight coefficients learn-
able during the training process can further improve the general
performance, which will be discussed in our future research.

6. Conclusions
This paper proposed an effective probability density distilla-
tion algorithm with generative adversarial networks (GANs) for
WaveNet-based parallel waveform generation (PWG) systems.
Within a teacher-student framework, the proposed method in-
corporated an inverse autoregressive flow (IAF)-based student
model as a generator in the GAN framework. Using novel opti-
mization criteria based on adversarial learning method, the per-
ceptual quality of the synthesized speech became much more
natural. The experimental results verified that the PWG system
using the proposed GAN-based training method performed bet-
ter than the systems with conventional approaches. Despite the
fact that the IAF student model was distilled from the teacher
WaveNet, the merits of GAN to represent the nature of speech
waveform enabled the student model to generate more natural
speech than even the well-trained teacher model.
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