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Abstract

This paper proposes a modeling-by-generation (MbG) ex-
citation vocoder for a neural text-to-speech (TTS) system. Re-
cently proposed neural excitation vocoders can realize quali-
fied waveform generation by combining a vocal tract filter with
a WaveNet-based glottal excitation generator. However, when
these vocoders are used in a TTS system, the quality of syn-
thesized speech is often degraded owing to a mismatch be-
tween training and synthesis steps. Specifically, the vocoder
is separately trained from an acoustic model front-end. There-
fore, estimation errors of the acoustic model are inevitably
boosted throughout the synthesis process of the vocoder back-
end. To address this problem, we propose to incorporate an
MBbG structure into the vocoder’s training process. In the pro-
posed method, the excitation signal is extracted by the acoustic
model’s generated spectral parameters, and the neural vocoder
is then optimized not only to learn the target excitation’s dis-
tribution but also to compensate for the estimation errors oc-
curring from the acoustic model. Furthermore, as the gener-
ated spectral parameters are shared in the training and synthe-
sis steps, their mismatch conditions can be reduced effectively.
The experimental results verify that the proposed system pro-
vides high-quality synthetic speech by achieving a mean opin-
ion score of 4.57 within the TTS framework.

Index Terms: neural text-to-speech, WaveNet, ExcitNet,
modeling-by-generation vocoder

1. Introduction

Generative models for raw speech waveform have significantly
improved the quality of neural text-to-speech (TTS) systems
[1,2]. Specifically, by conditioning acoustic features to the net-
work input, neural vocoding models such as WaveNet, Wav-
eRNN, and WaveGlow successfully generate a time-sequence
of speech signal [2-5]. More recently, neural excitation
vocoders such as GlotNet, ExcitNet, LP-WaveNet and LPC-
Net [6-10] have exploited the advantages of linear prediction
(LP)-based parametric vocoders. In this type of vocoder, an
adaptive predictor is used to decouple the formant-related spec-
tral structure from the input speech signal, and the probability
distribution of its residual signal (i.e. the excitation signal) is
then modeled by the vocoding network. As variation in the ex-
citation signal is only constrained by vocal cord movement, the
training and generation processes become much more efficient.

However, because the vocoding and acoustic models have
been trained separately, it is not known whether or not com-
bining them within the TTS framework would benefit synthesis
quality. Furthermore, as parameters estimated from the acoustic
model are used as a direct input of the vocoding model in the
synthesis step, estimation errors of the acoustic features can be
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propagated throughout the synthesis process. It is therefore cru-
cial to model the interactions between the acoustic and vocod-
ing elements during the training process in order to achieve the
best complete performance of the TTS system.

In this paper, we propose a neural excitation model based
on modeling-by-generation (MbG) in which the spectral param-
eters generated from the acoustic model are utilized in the neu-
ral vocoder’s training process. Specifically, the target excitation
is defined as a combination of the prediction errors from the
LP analysis and those from the acoustic model. The vocoding
model is then optimized to learn the distribution of the target
excitation while compensating for the errors from the acoustic
model. It has been reported elsewhere that training the neural
vocoder with generated acoustic parameters improves synthetic
quality [11]. Although the MbG method is similar to this ap-
proach, there are also clear differences in that MbG aligns even
the target excitation signal with the acoustic model’s generated
spectral parameters.

We investigated the effectiveness of the proposed method
by conducting subjective evaluation tasks. The MbG structure
can be extended to any neural excitation vocoder that uses LP
coefficients, but the focus here is on the WaveNet-based Ex-
citNet vocoder [7]. The experimental results show that a TTS
system with the proposed MbG-ExcitNet vocoder provides sig-
nificantly better perceptual quality than a similarly configured
system with a conventional vocoder. In particular, our TTS
framework achieves 4.57 mean opinion score (MOS).

2. Related work

The idea of using an MbG structure is not new. In a study of
parametric glottal vocoders, Juvela et al. [12] first proposed the
closed-loop extraction of glottal excitation from the generated
spectral parameters, and our own previous work proposed the
MbG structure to compensate for missing noise components
in generated glottal signals [13]. However, it was not possi-
ble to fully utilize the effectiveness of the MbG training strat-
egy because our experiments were only performed with sim-
ple deep learning models including stacked feed-forward and/or
long short-term memory (LSTM) networks.

Our aim here was to extend the usage of the MbG structure
to recently proposed neural excitation models (e.g. ExcitNet)
with autoregressive acoustic models (e.g. Tacotron) [11,14,15].
As the accuracy of acoustic models has been significantly im-
proved, it is now possible to extract stable excitation signals
from the generated spectral parameters. Furthermore, the Ex-
citNet vocoder directly models the time-domain excitation se-
quence which enables straightforward application of the MbG
structure to the training process. As a result, the entire model
can be stably and easily trained while the perceptual quality of
the synthesized speech is significantly improved.

http://dx.doi.org/10.21437/Interspeech.2020-2116
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Figure 1: An ExcitNet vocoder for a TTS system: (a) conventional training; (b) proposed MbG training; and (c) synthesis methods.
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Figure 2: Negative log-likelihood (NLL) obtained during the
training process with respect to the plain ExcitNet and MbG-
based ExcitNet (MbG-ExcitNet) training methods.

3. ExcitNet TTS systems
3.1. ExcitNet vocoders

The basic WaveNet framework is an autoregressive network
which generates a probability distribution of discrete speech
symbols from a fixed number of past samples [16]. The Excit-
Net vocoder is an advanced version of this network which takes
advantages of both the LP vocoder and the WaveNet structure.
In an ExcitNet framework, an LP-based adaptive predictor is
used to decouple the spectral formant structure from the input
speech signal (Fig. 1a). The WaveNet model is then used to
train the distribution of the prediction residuals (i.e. excitation)
as follows:

=

p(e|h) = p(e"|617 "'aen—hh)a (1)
n=1
p
€n = Tn — Zakmn_k, 2
k=1

where x,, and e,, denote the n" sample of speech and excita-
tion, respectively; oy denotes the k'™ LP coefficient with the
order p; h denotes the conditional inputs composed of acoustic
parameters.

In the speech synthesis step (Fig. 1c), the acoustic parame-
ters of the given input text are generated by a pre-trained acous-
tic model. These parameters are then used as conditional inputs
for the WaveNet model to generate the corresponding time se-
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quence of the excitation signal. Finally, the speech signal is re-
constructed by passing the generated excitation signal through
the LP synthesis filter.

3.2. MbG-structured ExcitNet vocoders

To further improve the quality of the synthesized speech, we
propose the incorporation of an MbG structure into the train-
ing process of the ExcitNet vocoder. As illustrated in Fig. 1a,
conventional vocoding models are trained separately from the
acoustic model, even though the generated acoustic parameters,
which contain estimation errors, are used as direct conditional
inputs (Fig. 1c). This inevitably causes quality degradation of
the synthesized speech as the estimation errors from the acous-
tic model are boosted non-linearly throughout the synthesis pro-
cess in the vocoder back-end.

Fig. 1b shows the proposed MbG training method which
uses closed-loop extraction! of the excitation signal. To mini-
mize the mismatch between the training and the generation pro-
cesses, the LP coefficients in the training step are replaced with
those generated by the pre-trained acoustic model as follows:

(€))

p
bn = Tn — E dkmn—ky
k=1

where {41, ..., &p} denotes the generated LP coefficients. By
combining equations (2) and (3), the excitation sequence can be
represented as follows:

én =en+ G?Lm7 (4)
where ei™ denotes an intermediate prediction defined as fol-

lows:
p
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Using the excitation signal (i.e. é,,) as the training target means
that it becomes possible to guide the model to learn the distribu-
tions of the true excitation signal (i.e. e, ) as well as compensate
for the acoustic model’s estimation errors (i.e. e;"). Further-
more, because the training and synthesis processes share the
same LP coefficients, it is also possible to minimize any mis-
match.

I'This extraction method has been adopted in analysis-by-synthesis
speech coding frameworks [17,18] where the encoder and decoder share
the same quantized filter parameters for minimizing their mismatch con-
ditions.
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Figure 3: Acoustic model consisting of three sub-modules: context analysis, context embedding, and Tacotron decoding.

The merits of the proposed method are presented in Fig. 2
which shows the negative log-likelihood obtained from the
training and validation sets. The proposed MbG-ExcitNet
model enables a reduction in both training and validation er-
rors as compared to a plain ExcitNet approach. It is therefore
expected that the proposed method will provide more accurate
training and generation results, to be further discussed in the
following section.

4. Experiments
4.1. Experimental setup
4.1.1. Database

The experiments used a phonetically and prosodically bal-
anced speech corpus recorded by a Korean female professional
speaker. The speech signals were sampled at 24 kHz with 16 bit
quantization. In total, 4,408 utterances (7.9 hours) were used
for training, 230 utterances (0.4 hours) were used for validation,
and a further 120 utterances (0.2 hours) were used for testing.
The acoustic features were extracted using the improved time-
frequency trajectory excitation vocoder at analysis intervals of 5
ms [19], and these features included 40-dimensional line spec-
tral frequencies (LSFs), fundamental frequency (F0), energy,
voicing flag (v/uv), 32-dimensional slowly evolving waveform
(SEW), and 4-dimensional rapidly evolving waveform (REW),
all of which constituted a 79-dimensional feature vector.

4.1.2. Acoustic model

Although there are many state-of-the-art acoustic models avail-
able, including Tacotron and Transformer [11, 14,20], we opted
to pursue a Tacotron model with phoneme alignment approach
[15] because of its fast and stable generation and competitive
synthetic quality. Fig. 3 is a block diagram of the acoustic model
which consists of three sub-modules, namely context analysis,
context embedding, and Tacotron decoding.

In the context analysis module, the phoneme-level linguis-
tic feature vectors were extracted from the input text. These
were composed of 330 binary features for categorical linguis-
tic contexts and 24 features for numerical linguistic contexts.
Having input these features, the corresponding phoneme dura-
tion was estimated through three fully connected (FC) layers
with 1,024, 512, 256 units followed by a unidirectional LSTM
network with 128 memory blocks. Based on this estimated du-
ration, the phoneme-level linguistic features were then upsam-
pled to frame-level adding two numerical vectors of phoneme
duration and its relative position.
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In context embedding, the linguistic features were trans-
formed into high-level context vectors. The module here con-
sisted of three convolution layers with a 10x1 kernel and 512
channels per layer, a bi-directional LSTM network with 512
memory blocks, and an FC layer with 512 units.

We used a Tacotron 2 decoder network to generate the out-
put acoustic features [11]. First, the previously generated acous-
tic features were fed into two FC layers with 256 units (i.e. the
PreNet), and those features and the vectors from the context em-
bedding module were then passed through two uni-directional
LSTM layers with 1,024 memory blocks followed by two pro-
jection layers. Finally, to improve generation accuracy, five con-
volution layers with 5x1 kernels and 512 channels per layer
were used as a post-processing network (i.e. the PostNet) to
add the residual elements of the generated acoustic features.

Before training, the input and output features were normal-
ized to have zero mean and unit variance. The weights were ini-
tialized using Xavier initialization and Adam optimization was
used [21,22]. The learning rate was scheduled to be decayed
from 0.001 to 0.0001 via a decaying rate of 0.33 per 100,000
steps.

4.1.3. Vocoding model

The architecture of the proposed MbG-ExcitNet comprised
three convolutional blocks, each with 10 convolution layers
with dilations of 1, 2, 4, and so on, up to 512. The numbers
of dilated causal convolution channels and 1x1 convolutions
in the residual block were both set to 512, and the number of
1x 1 convolution channels between the skip connection and the
softmax layer was set to 256.

Before training, the LSFs in the training set were gener-
ated by the pre-trained acoustic model and were used to com-
pose the conditional inputs together with auxiliary parameters
extracted from the input speech, such as FO, energy, v/uv, SEW,
and REW. It is possible to use auxiliary parameters also gen-
erated by the pre-trained acoustic model, but we recommend
to use ground-truth observations to avoid generating unstable
speech segments. The conditional inputs were normalized to
have zero mean and unit variance and were duplicated from
frame to sample to match the length of the input speech sig-
nals [3]. The corresponding excitation signals were obtained by
passing the input speech signals through the LP analysis filters
formed by the generated LSFs. They were then normalized to
range between -1.0 and 1.0 followed by 8-bit p-law encoding.

The weights were initialized using Xavier initialization and
Adam optimization was used. The learning rate was set to
0.0001, and the batch size was set to 30,000 (1.25 sec).



Table 1: TTS naturalness MOS results with 95% confidence in-
tervals with respect to the different vocoding models: the best
MOS scores are in bold.

Index System MOS

Test1  WaveNet 3.2340.11
Test2  ExcitNet 4.4340.08
Test3  G-WaveNet 3.3610.11
Test4  G-ExcitNet 3.2940.12
Test5  MbG-ExcitNet (ours) 4.571+0.07
Test6 Raw 4.661+0.07

4.1.4. TTS system

In the synthesis step, all of the acoustic feature vectors were
predicted by the acoustic model with the given input text. By
inputting these features, the MbG-ExcitNet vocoder generated
a discrete symbol of the quantized excitation signal, and its dy-
namic was recovered via p-law expansion. Finally, the speech
signal was reconstructed by applying the LP synthesis filter to
the generated excitation signal.

4.2. Evaluations

To evaluate the perceptual quality of the proposed system, nat-
uralness MOS tests were performed” by asking 13 native Ko-
rean speakers to make quality judgments about the synthesized
speech samples using the following five responses: 1 = Bad; 2
= Poor; 3 = Fair; 4 = Good; and 5 = Excellent. In total, 20
utterances were randomly selected from the test set and were
synthesized using the different generation models. In particu-
lar, the speech samples synthesized by the below conventional
vocoding methods were evaluated together to confirm perfor-
mance differences:

¢ WaveNet: Plain WaveNet vocoder [3]
* ExcitNet: Plain ExcitNet vocoder [7]

* G-WaveNet: WaveNet vocoder trained with generated
acoustic parameters [11]

¢ G-ExcitNet: ExcitNet vocoder trained with generated
acoustic parameters

The G-ExcitNet vocoder was configured similarly to the pro-
posed MbG-ExcitNet, but its target excitation was extracted
from the ground-truth spectral parameters.

Table 1 presents the MOS test results for the TTS systems
with respect to the different vocoding models, and the analysis
can be summarized as follows: First, when training vocoding
models using ground-truth acoustic parameters, ExcitNet per-
formed better than WaveNet (Tests 1 and 2). This implies that
ExcitNet’s adaptive spectral filter is beneficial to reconstruct a
more accurate speech signal [7]. Second, training the model
with generated parameters provided better perceptual quality
than using the ground-truth approach in WaveNet (Tests 1 and
3), but vice versa in ExcitNet (Tests 2 and 4). This result con-
firms that target excitation should be replaced by considering
the acoustic model’s estimation errors in excitation-based meth-
ods. Lastly, the proposed MbG-ExcitNet performed best across
the different vocoders (Tests 5 and the others). Because the

2Generated audio samples are available at the following URL:
https://sewplay.github.io/demos/mbg_excitnet
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Figure 4: A/B/X preference comparison of MbG-ExcitNet and
its initialization-refined version, MbG-ExcitNet".

MDG training strategy guided the vocoding model to compen-
sate for errors from the acoustic model, it was possible to signif-
icantly improve synthesis accuracy. Consequently, the TTS sys-
tem with the proposed MbG-ExcitNet vocoder achieved 4.57
MOS.

To further verify the effectiveness of the proposed method,
we designed additional experiments to refine the initialization
of MbG-ExcitNet’s model weights. Since the MbG training
process utilizes generated spectral parameters and the corre-
sponding excitation signals as the input conditions and target
outputs, respectively, it may be difficult to capture the speech
signals’ original characteristics. We therefore adopted a transfer
learning method [23] through which the MbG-ExcitNet was ini-
tialized by the plain ExcitNet model whose own weights were
optimized by ground-truth speech spectra and excitations. All
weights were then fine-tuned by the MbG framework. As a re-
sult, it was possible to guide the entire training process to learn
the characteristics of both the original and the generated speech
segments.

Fig. 4 depicts the results of an A/B/X preference test
between the proposed MbG-ExcitNet and this initialization-
refined version (MbG-ExcitNet™). The setup for this test was
the same as for the MOS assessment except that listeners were
asked to rate the quality preference of the synthesized speech
samples. The results confirm that the initialization-refined sys-
tem provided better perceptual quality than the originally pro-
posed MbG-ExcitNet. This confirms that adopting a transfer
learning method is advantageous to generating more natural
speech signal in an MbG-structured TTS system.

5. Conclusions

This paper has proposed a high-quality neural TTS system that
incorporates an MbG structure into the ExcitNet vocoder. The
MbG-ExcitNet back-end was optimized to learn excitation out-
put distributions while simultaneously compensating for esti-
mation errors from the acoustic model front-end. As such, the
proposed method was effective in minimizing the mismatch be-
tween the acoustic model and the vocoder. The experimental
results verified that a TTS system with the proposed MbG-
ExcitNet vocoder performed significantly better than conven-
tional systems with similarly configured WaveNet vocoders.
Future research should include extending the framework into
speech synthesis systems based on WaveRNN and/or WaveG-
low vocoders.
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