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Abstract—This paper proposes speaker-adaptive neural
vocoders for parametric text-to-speech (TTS) systems. Recently
proposed WaveNet-based neural vocoding systems successfully
generate a time sequence of speech signal with an autoregressive
framework. However, it remains a challenge to synthesize high-
quality speech when the amount of a target speaker’s training
data is insufficient. To generate more natural speech signals
with the constraint of limited training data, we propose a
speaker adaptation task with an effective variation of neural
vocoding models. In the proposed method, a speaker-independent
training method is applied to capture universal attributes em-
bedded in multiple speakers, and the trained model is then
optimized to represent the specific characteristics of the target
speaker. Experimental results verify that the proposed TTS
systems with speaker-adaptive neural vocoders outperform those
with traditional source-filter model-based vocoders and those
with WaveNet vocoders, trained either speaker-dependently or
speaker-independently. In particular, our TTS system achieves
3.80 and 3.77 MOS for the Korean male and Korean female
speakers, respectively, even though we use only ten minutes’
speech corpus for training the model.

Index Terms—Text-to-speech, neural vocoder, WaveNet, Excit-
Net, speaker adaptation

I. INTRODUCTION

Waveform generation systems using WaveNet have attracted
a great deal of attention in the speech signal processing
community thanks to their high quality and ease of use
in various applications [1], [2]. In a system of this kind,
the time domain speech signal is represented as a sequence
of discrete symbols, and its distribution is autoregressively
modeled by stacked convolutional neural networks (CNNs).
By appropriately conditioning the acoustic features to the
input, WaveNet-based systems have also been successfully
adopted in a neural vocoder structure for parametric text-to-
speech (TTS) systems [3]–[7].

To further improve the perceptual quality of the synthesized
speech, more recent neural excitation vocoders (e.g. ExcitNet
[8]) take advantages of the merits from both the parametric
LPC vocoder and the WaveNet structure [9]–[13]. In this
framework, an adaptive predictor is used to decouple the
formant-related spectral structure from the input speech signal,
and the probability distribution of its residual signal (i.e. the
excitation signal) is then modeled by the WaveNet network.
As variation in the excitation signal is only constrained by
vocal cord movement, the training and generation processes

become more efficient. As such, TTS systems with the neural
excitation vocoders reconstruct more accurate speech signals
than the conventional parametric or WaveNet vocoders [8].

However, this approach still requires large amounts of
training data to faithfully represent the complex mechanics
of human speech production. As a result, unnatural outputs
are generated when the training data for the target speaker is
insufficient (e.g. a database comprising less than ten minutes’
speech). The speaker-independent training method that utilizes
multiple speakers for a single unified network shows the
feasibility of generating diverse characteristics of voices by
conditioning the target speaker’s acoustic features [4]. How-
ever, our preliminary experiments verify that this approach still
generates discontinuous speech segments if the target speaker’s
data is not included in the training process. This problem
is more prominent under a TTS framework where predic-
tion errors in estimating auxiliary parameters are inevitable;
prediction errors are propagated throughout the autoregressive
generation process.

To alleviate this problem, we propose a speaker-adaptive
training method for neural vocoding systems. In this frame-
work, to address the lack of speaker-specific information
caused by limited training data for a target speaker, a model
is trained independently of the target speaker such that it
extracts universal attributes from multiple speakers [4]. This
model is then used to initialize the training model of the
target speaker, and all weights are fine-tuned to represent the
distinctive characteristics within the target’s database. Because
this adaptation process helps the CNNs capture speaker-
specific characteristics, it is also advantageous in reducing
the discontinuity problems that occur in conventional speaker-
independent models.

We investigate the effectiveness of the proposed method by
conducting objective and subjective evaluations with systems
designed both dependently and independently of the target
speaker. The merits of the proposed method can be found in
its robust performance in a pitch modification task because its
initial model shares the diverse characteristics extracted from
multiple speech databases. Experiments in arbitrary changes to
F0 contours confirm that the proposed speaker-adaptive train-
ing method synthesizes the modified F0 sound very reliably
compared to the conventional speaker-dependent approaches.
Furthermore, the experimental results show that the proposed
method significantly improves the perceptual quality of syn-
thesized speech compared to conventional approaches.978-1-7281-9320-5/20/$31.00 © 2020 IEEE
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Fig. 1: ExcitNet vocoder framework for a TTS system: (a)
training and (b) synthesis.

II. NEURAL VOCODERS

A. WaveNet-based neural vocoding frameworks

The basic WaveNet framework is an autoregressive network
which generates a probability distribution of waveforms from
a fixed number of past samples [2]. Recent WaveNet vocoders
directly utilize acoustic features as the conditional input where
these features are extracted from conventional parametric
vocoders [3]–[7]. This enables the WaveNet system to auto-
matically learn the relationship between acoustic features and
speech samples which results in superior perceptual quality
over traditional parametric vocoders [3], [14].

However, due to the inherent structural limitations of CNNs
in terms of capturing the dynamic nature of speech signals, the
WaveNet often generates noisy outputs caused by distortion in
the spectral valley regions. To improve the quality of syn-
thesized speech, several frequency-dependent noise-shaping
filters have been proposed [8]–[13]. In particular, the neural
excitation vocoder ExcitNet (described in Figure 1a) exploits
a linear prediction (LP)-based adaptive predictor to decouple
the spectral formant structure from the input speech signal.
The WaveNet-based generation model is then used to train
the residual LP component (i.e. the excitation signal).

In the speech synthesis step shown in Figure 1b, the acoustic
parameters of the given input are first generated by an acoustic
model designed with a conventional deep learning-based TTS
system [15]. Those parameters are used as auxiliary condi-
tional features for the WaveNet model to generate the corre-
sponding time sequence of the excitation signal. Ultimately,
the speech signal is reconstructed by passing the generated
excitation signal through the LP synthesis filter.

B. Speaker-adaptive neural vocoders

The superiority of neural vocoding systems over traditional
parametric vocoders has been explained above but it is still
challenging to build a high-quality speech synthesis system
when the training data for a target speaker is insufficient, for
example with just ten minutes of speech.

To generate a more natural speech signal with limited
training data, we employ an adaptation task in training the

Fig. 2: Negative log-likelihood (NLL) obtained during the
training process with (w/) and without (w/o) adaptation.

TABLE I: Number of utterances in different sets for the Korean
male (KRM) and the Korean female (KRF) speakers (SPKs).

SPK Training Development Test
KRM 55 (10 min) 25 (5 min) 80 (15 min)
KRF 90 (10 min) 40 (5 min) 130 (15 min)

neural vocoders1. In the proposed framework, a speaker-
independently trained multi-speaker model is used as an ini-
tializer, and then all weights are updated in training the target
speaker’s model. As the initial model already represents global
characteristics embedded in the multiple speakers quite well
[4], the fine-tuning mechanism only needs to capture speaker-
specific characteristics from the target’s data set. Consequently,
the entire learning process becomes more effective. Fig. 2
shows the negative log-likelihood obtained during the training
phase, of which results confirm that the proposed method
significantly reduces both training and development errors as
compared to the system without having an adaptation process.

III. EXPERIMENTS

A. Experimental setup

To investigate the effectiveness of the proposed method, we
trained neural vocoding models using three different methods:

‚ SD: speaker-dependent training model
‚ SI: speaker-independent training model
‚ SA: speaker-adaptive training model

In the SD and SA models, speech corpora recorded by
Korean male and Korean female speakers were used. The
speech signals were sampled at 24 kHz, and each sample was
quantized by 16 bits. Table I shows the number of utterances
in each set. To train the SI model, speech corpora recorded by
five Korean male and five Korean female speakers not included
in training the SD and SA models were used. For this, 6,422
(10 h) and 1,080 (1.7 h) utterances were used for training and
development, respectively. The testing set in the SD and SA
models was also used to evaluate the SI model.

1Note that we only focus on the WaveNet vocoders in this study, but the
proposed method can be extended to any of neural vocoders such as RNN-
or Glow-based models [16]–[18].



To compose the acoustic feature vectors needed for auxil-
iary input information, the spectral and excitation parameters
were extracted using a previously proposed parametric ITFTE
vocoder [15]. In this way, 40-dimensional line spectral fre-
quencies (LSFs), 32-dimensional slowly evolving waveform
(SEW), 4-dimensional rapidly evolving waveform (REW), the
F0, gain, and v/uv were extracted. The frame and shift lengths
were set to 20 ms and 5 ms, respectively.

In the WaveNet training step, all acoustic feature vectors
were duplicated from a frame to the samples to match the
length of the input speech signals [3]. Before training, they
were normalized to have zero mean and unit variance. The
corresponding speech signal was normalized in in a range
between -1.0 and 1.0 and encoded by 8-bit-µ compression. The
WaveNet architecture comprised of three convolutional blocks,
each with ten dilated convolution layers with dilations of 1,
2, 4, and so on up to 512. The number of channels of dilated
causal convolution and the 1ˆ1 convolution in the residual
block were both set to 512. The number of 1ˆ1 convolution
channels between the skip-connection and the softmax layer
was set to 256. The learning rate was set to 0.0001, and the
batch size was set to 30,000 (1.25 sec).

To train the SI-WaveNet model, all data from the multiple
number of different speakers were used; the sequence of each
batch was randomized across all speakers before input to the
training process. The weights were initialized using Xavier
initialization and Adam optimization was used [19], [20]. The
training methods of the SD- and SA-WaveNets were similar
but the initialization process was different in each case the SD
model was initialized by Xavier initialization whereas the SA-
WaveNet was initialized using the SI-WaveNet model whose
weights were optimized toward the target speaker’s database
to represent speaker-specific characteristics.

To construct a baseline TTS acoustic model, we employed a
shared hidden layer (SHL) acoustic model [21], [22]. The lin-
guistic input feature vectors were 356-dimensional contextual
information consisting of 330 binary features of categorical
linguistic contexts and 26 features of numerical linguistic
contexts. The output vectors consisted of all the acoustic
parameters together with their time dynamics [23]. Before
training, both input and output features were normalized to
have zero mean and unit variance. The SHL consisted of three
feedforward layers with 1,024 units and one long short-term
memory layer with 512 memory blocks. The weights were
trained using a backpropagation through time algorithm with
Adam optimization [24].

In the synthesis step, the means of all acoustic features were
predicted by the SHL model first, then a speech parameter gen-
eration algorithm was applied with the pre-computed global
variances [25], [26]. To enhance spectral clarity, an LSF-
sharpening filter was also applied to the spectral parameters
[15]. To reconstruct the speech signal, the generated acoustic
features were used to compose the input auxiliary features. By
conditioning these features, the WaveNet generated discrete
symbols corresponding to the quantized speech signal, and its
dynamic was recovered via µ-law expansion.

TABLE II: LSD (dB) and F0 RMSE (Hz) results for the
Korean male (KRM) and the Korean female (KRF) speakers
(SPKs): the smallest errors are in bold.

SPK System WaveNet ExcitNet
LSD F0 RMSE LSD F0 RMSE

SD 4.37 21.30 3.93 14.83
KRM SI 4.06 14.76 3.86 14.39

SA 4.03 14.16 3.82 14.03
SD 4.78 48.75 4.50 39.14

KRF SI 4.51 35.53 4.42 36.28
SA 4.45 35.45 4.36 35.47

TABLE III: Objective test results in the large-scale (7 hours)
adaptation: the smallest errors are in bold.

SPK System WaveNet ExcitNet
LSD F0 RMSE LSD F0 RMSE

SD 3.63 11.28 3.37 12.08
KRM SI 3.66 12.08 3.40 11.65

SA 3.58 11.04 3.33 10.93
SD 4.08 28.75 3.95 28.76

KRF SI 4.13 28.77 4.00 28.84
SA 4.03 28.57 3.90 28.36

The setups for training the SI-, SD-, and SA-ExcitNets
were the same as those for the WaveNets but the ExcitNet-
based framework predicted the distribution of the excitation
signal, obtained by passing the speech signal through the LP
analysis filter. Similar to the WaveNet vocoder, the ExcitNet
vocoder generated the excitation sequence in the synthesis
step. Ultimately, the speech signal was reconstructed through
an LP synthesis filter.

B. Objective test results

1) Parametric text-to-speech: To verify the performance of
the proposed method, we measured distortions between the
original speech and the synthesized speech with log-spectral
distance (LSD; dB) and F0 root mean square error (RMSE;
Hz) measures. Table II presents the test results with respect
to the different types of training methods. The findings can
be outlined as follows: (1) The proposed SA training method
reconstructs more accurate speech signals than the SD and SI
models in both WaveNet and ExcitNet vocoders. (2) Among
the different vocoding systems, the ExcitNet-based framework
performed better than the WaveNet-based one in terms of
spectral distortion because the adoption of an adaptive spectral
filter for the ExcitNet vocoder is beneficial for more accurately
modeling the target speech signals.

To verify the effectiveness of the proposed algorithm in
a large amount of training database condition, additional
experiments were conducted by changing the adaptation data
size from 10 minutes to 7 hours. For the comparison, the
amount of database to train the SD model and the SHL
acoustic model was also increased to 7 hours. Table III shows
the test results, which confirms that adapting the vocoding
model toward target speaker’s database is still advantageous
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Fig. 3: F0 RMSE (Hz) results with respect to different values
of the scaling factor: (a) Korean male and (b) Korean female
speakers.

to improve the modeling accuracy regardless of the amount of
training data set.

2) Speech modification: To further verify the effectiveness
of the proposed SA training method, we investigated the
performance variation of neural vocoders when F0 is manually
modified. It has already been shown that the SI model effec-
tively generates pitch-modified synthesized speech [4]. As the
entire network of the SA approach in the present study was
adapted from an SI model, it was expected to further improve
performance compared to conventional SD approaches.

In this experiment, the F0 trajectory was first generated by
the TTS acoustic model and then multiplied by a scaling factor
(0.6, 0.8, 1.0, and 1.2) to modify the auxiliary feature vectors.
Finally, the speech signal was synthesized using the neural
vocoding systems. Figure 3 illustrates the F0 RMSE (Hz) test
results with respect to the different values of scaling factor.
The results can be analyzed as follows: (1) The proposed
SA training models result in smaller modification errors than
the conventional SD approaches. (2) The performance of
the SI and SA methods was not much different, but the SI
method was somewhat better than the SA method for the
female speaker case, especially when the modification ratio
was high. (3) In all experiments, the ExcitNet-based system
performed better than the WaveNet-based one because the
ExcitNet model was instructed to learn the variation of vocal
cord movement.

C. Subjective test results

To evaluate the perceptual quality of the proposed system,
mean opinion score (MOS) tests were performed2. In the

2Generated audio samples are available at the following url:
https://sewplay.github.io/demos/vocoder adaptation/
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Fig. 4: MOS results with 95% confidence intervals. Acoustic
features extracted from recorded speech and generated from
an acoustic model were used to compose the input auxiliary
features in the A/S and TTS tasks, respectively: (a) Korean
male and (b) Korean female speakers.

tests, twelve native Korean listeners were asked to make
quality judgments about the synthesized speech based on the
following five possible responses: 1 = Bad; 2 = Poor; 3 = Fair;
4 = Good; and 5 = Excellent. Note that the listening tests were
performed in an acoustically isolated room using a Sennheiser
HD650 headphone. In total, twenty utterances were randomly
selected from the test set and were then synthesized by using
the different neural vocoders. To verify vocoding performance,
the speech samples synthesized by the conventional vocoders
such as ITFTE and WORLD (D4C edition [27]) were also
included.

As presented in Figure 4, the subjective test results confirm
the effectiveness of each system in several ways: (1) In both
the analysis and synthesis (A/S) and TTS frameworks, the SD
vocoders performed worst because it was difficult to learn the
target speaker’s characteristics with such a small amount of
training data. (2) As the SI models could represent multiple
speaker’s voices, they were able to synthesize more natural
speech than than the SD approaches. (3) Across all the training
methods, the SA version achieved the best quality, which
confirms that adapting the multi-speaker model to the target
speaker’s database is beneficial for the vocoding performance.
(4) Comparing with the WaveNet, the ExcitNet performed
better overall, confirming that decoupling the formant compo-
nent of the speech signal via an LP inverse filter significantly
improves the modeling accuracy. (5) Consequently, the TTS
system with the proposed SA-ExcitNet vocoder achieved 3.80
and 3.77 MOS for the Korean male and Korean female
speakers, respectively.



IV. CONCLUSION

This paper proposed speaker-adaptive neural vocoders for
parametric TTS systems when the amount of target speaker’s
data is insufficient. Using an initial speaker-independent
trained model, the system first captured universal attributes
from the waveform of multiple speakers’. This model was then
fine-tuned with the target speaker’s database to successfully
represent speaker-specific characteristics using only ten min-
utes of training data. Adapting an ExcitNet framework with
spectral filters also helped to improve the modeling accuracy.
The experimental results verified that the TTS system with
the proposed speaker-adaptive neural vocoder performed sig-
nificantly better than traditional versions with linear predictive
coding-based vocoders and systems with similarly configured
neural vocoders trained both speaker-dependently and speaker-
independently. Future research includes integrating the entire
framework into speech synthesis systems that use an end-to-
end approach.
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