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Abstract
In this paper, we propose a lightweight end-to-end text-to-
speech model that can generate high-quality speech at break-
neck speed. In our proposed model, a feature prediction module
and a waveform generation module are combined within a sin-
gle framework. The feature prediction module, which consists
of two independent sub-modules, estimates latent space embed-
dings for input text and prosodic information, and the wave-
form generation module generates speech waveforms by condi-
tioning on the estimated latent space embeddings. Unlike con-
ventional approaches that estimate prosodic information using a
pre-trained model, our model jointly trains the prosodic embed-
ding network with the speech waveform generation task using
an effective domain transfer technique. Experimental results
show that our proposed model can generate samples 7 times
faster than real-time, and about 1.6 times faster than FastSpeech
2, as we use only 13.4 million parameters. We confirm that the
generated speech quality is still of a high standard as evaluated
by mean opinion scores.
Index Terms: text-to-speech, prosody, vocoder, Hifi-GAN

1. Introduction
Thanks to the advancement in deep generative model-based
speech synthesis systems, the quality of text-to-speech (TTS)
systems has significantly improved in recent years. In general,
these deep generative models are categorized into either autore-
gressive or non-autoregressive approaches. Some well-known
autoregressive TTS models include Tacotron [1], Tacotron 2 [2],
Deep Voice 3 [3], and Transformer TTS [4]. For instance,
Tacotron 2 can generate audio of quality close to that of nat-
ural human voices, but it has a large number of parameters, and
its training and inference time are slow due to the nature of au-
toregressive modeling in the waveform generation process.

To address this issue, non-autoregressive models such as
FastSpeech [5], FastSpeech 2 [6], and Parallel Tacotron [7]
have been proposed, which perform parallel processing dur-
ing the inference stage. The key point of these models is that
they predict the duration of each phonetic frame and expand
it to have an identical duration as a Mel-spectrogram. Non-
autoregressive TTS models break the barrier to real-time perfor-
mance because acoustic frames are generated in parallel. No-
tably, FastSpeech 2 [6] predicts pitch and energy information
from expanded linguistic context, then combines pitch, energy,
and expanded text embeddings together before being decoded
into a Mel-spectrogram.

Most speech synthesis systems are designed in a two-
step manner: generation of Mel-spectrograms from input texts
(i.e., a feature prediction module), followed by synthesis of
waveforms with a pre-trained neural vocoder given the Mel-
spectrograms (i.e., a waveform generation module) [8–13]. Al-
though this two-step process is useful for training large and

hard-to-train networks in settings where resources are limited,
it may lead to an error propagation issue between the two mod-
ules. In addition, since the network needs a decoder to gen-
erate Mel-spectrograms in the feature prediction module, the
network must be sufficiently large. If we can remove the Mel-
spectrogram decoder in the network, then the model size can be
significantly reduced.

In this paper, we propose a fully text-to-wave model that
does not generate intermediate speech signal-related represen-
tations, i.e. Mel-spectrograms in the feature prediction mod-
ule. In other words, our model directly synthesizes speech
waveforms using a generative adversarial network (GAN) style
waveform generation module. We also utilize a domain trans-
fer technique to extract prosodic information directly from text.
Since the two encoders that extract text and prosodic embed-
dings are constructed by small and computationally efficient
architectures, our proposed model is small and its processing
speed is considerably fast. Therefore, our model is suitable for
on-device practical applications.

Our contributions are summarized as follows: 1) We design
a fully text-to-wave model which is appropriate for portable de-
vices with a size of only 13.4 million parameters; 2) We in-
troduce an effective way to extract prosodic information from
text during the speech generation process by leveraging the con-
cept of domain transfer; 3) We evaluate the performance of our
model and compare it with conventional approaches. Our model
achieves a mean opinion score (MOS) of 3.84 while we are able
to generate samples 7 times faster than real-time, 5 times faster
than Tacotron 2 in a CPU environment.

2. Related works
Several studies [6, 14, 15] have investigated methods to directly
generate speech waveforms from input text without using an in-
termediate feature decoding process. For instance, FastSpeech
2s uses Parallel WaveGAN [13] to synthesize speech waveforms
directly from context information. However, it still uses an ad-
ditional decoder that performs an auxiliary task to improve the
training performance. On the other hand, SpeedySpeech [16]
and LightSpeech [17] are models that aim to run on on-device
real-time applications. As such, these two TTS models must
use only a small number of parameters while still generating
reasonable speech quality. However, SpeedySpeech still oper-
ates in a two-step processing style, and LightSpeech utilizes a
neural architecture search technique to design a low-cost model
with a baseline model, unlike our work.

3. Proposed model: LiteTTS
Fig. 1(a) illustrates the overall architecture of our proposed
model. The model is composed of a prosody encoder (Ep), a
text encoder (Et), a domain transfer encoder (Ef ), an alignment
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Figure 1: (a) Overall training and inference architectures. During training, phonetic feature x and acoustic feature Z extracted from
the same sentence are used as the model’s inputs. During inference, the prosody encoder Ep and alignment blocks A are removed, but
the model still uses identical phonetic features as input for both text and prosody encoders (Et and Ep). (b) Architecture of the text and
domain transfer encoders: (1) overall architecture of encoder; (2) lite-FFT block; and (3) long-short range attention (LSRA) block.

module (A), a duration predictor (P), a waveform generator (G),
and a discriminator block (D). A sequence of m phonemes and
an n-length reference Mel-spectrogram are respectively denoted
as x = [x1, x2, ..., xm] and Z = [z1, z2, ..., zn], which are given
as the inputs to the model during training time. Basically, pho-
netic information is obtained by a text encoder, and prosody-
related information is provided by either the prosody encoder
(during training) or the domain transfer encoder (during infer-
ence time). The combination of these two sources of informa-
tion is expanded to have the same length as a Mel-spectrogram
so that the waveform generator can directly synthesize speech
from it. Lastly, the discriminator block distinguishes whether
the speech is generated or recorded reference.

3.1. Model architecture

Text encoder (Et). The text encoder takes x as input and
generates phonetic embeddings Ht = Et(x), where Ht =
[ht

1, ht
2, ..., ht

m]. Fig. 1(b) shows the detailed architecture of the
text encoder. Input x is first embedded using a learnable pho-
netic embedding lookup table before adding positional encod-
ings to it. Later, the combined embeddings are passed through
multiple lite Feed-Forward Transformer (lite-FFT) blocks to ob-
tain high-level phonetic embeddings Ht.

The architecture of lite-FFT blocks (Fig. 1(b)) is a modi-
fied version of the Transformer to preserve the efficiency when
running on low-resource devices. Specifically, we adopt the ar-
chitecture of long-short range attention (LSRA) [18] to replace
the attention module. Unlike in the conventional Transformer,
where a single attention module is utilized to aggregate the in-
formation of the input, the LSRA module uses two branches that
process the input information in parallel. As illustrated in Fig.
1(b3), the attention branch aims to gather the global knowledge
of the input when the convolution branch is expected to obtain
the local information. LSRA allows for the use of fewer param-
eters while still providing effective performance.

Prosody encoder (Ep). Prosody1is one of the fundamental
components of speech; thus, it needs to be included in the TTS
training process in order to effectively model the data distribu-
tion [6, 19, 20]. FastSpeech 2 provides various prosodic knowl-
edge such as energy and pitch to the model by using predictor
networks. However, using a separate predictor network for each
prosodic factor is neither resource-friendly nor optimal in terms
of quality. Moreover, around three-fourths of connections in
neural networks can be removed without damaging the overall

performance because neural networks are likely to be overpa-
rameterized [21, 22]. Therefore, a single network may be able
to carry out more than one specific task.

Motivated by this, we design a single network which ex-
tracts multiple prosodic factors from the input acoustic features.

Our prosody encoder takes acoustic features Z as input, and
outputs the prosody embeddings Hp = [hp

1, h
p
2, ..., h

p
n], where

Hp = Ep(Z). The single prosody network Ep is built such that
it is able to productively provide multiple prosodic factors to-
gether. Specifically, embeddings Hp are followed by pitch pre-
diction and energy prediction tasks to ensure that the prosody
embeddings Hp contain both kinds of information. The pitch
and energy prediction loss functions are defined as:

Lp =
1

n

n∑
i=1

‖pi − p̄i‖1 and Le =
1

n

n∑
i=1

‖ei − ēi‖1, (1)

where p, e denote the ground-truth pitch and energy while p̄, ē
represent the predicted pitch and energy, respectively.

Alignment block (A). The role of alignment block A is to
transform n-length frame-level prosody embeddings Hp into
m-length phoneme-level prosody representations H̃p, where
H̃p = A(Hp). In the training stage, the prosody embed-
dings H̃p are then combined with phonetic embeddings to form
Hc = Ht + H̃p. Here, Hc carries both the phoneme and prosody
information of the input utterance.

Duration predictor (P). The duration predictor is em-
ployed to predict the duration of each phoneme, which liter-
ally means how many frames in the Mel-spectrogram that a
phoneme corresponds to. Given the text embeddings Ht, the
vector d̄ = [d̄1, d̄2, ..., d̄m] represents the predicted duration of
m input phonemes as d̄ = P(Ht). It is also worth mentioning
that

∑m
i=1 d̄i = n. The loss function for training the duration

predictor is defined as:

Ldur =
1

m

m∑
i=1

‖di − d̄i‖1, (2)

where d represents the ground-truth duration.

1Prosody can be attributed to various aspects. Among them, pitch,
energy and duration are crucial components. As duration information
is given by the duration predictor P, we hereinafter denote prosody as
pitch and energy information.
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After that, embeddings Hc are expanded based on the pre-
dicted duration d̄. For instance, the ith frame of Hc will be
repeated di times and they are stacked all together. As a result,
we obtain He = [he

1, he
2, ..., he

n] as an expanded version of Hc.
Embeddings He are then passed through a projection layer be-
fore going to the waveform generator module G. This projection
layer is not illustrated in Fig. 1(a) to keep it simple.

Domain transfer encoder (Ef ). The phoneme sequence input
x is fed into this encoder to generate the m-length embeddings
as Hf = Ef (x). The embeddings Hf are expected to share the
same prosody domain knowledge with embeddings H̃p by con-
straining them to be close to each other using a loss function Lc

that encourages their similarity. We experimented with various
types of losses such as pair-wise ranking loss [23,24] and cosine
similarity, but found that simply using L1 loss for Lc performs
better than the others.

The underlying intuition behind this is that the prosody in-
formation in H̃p will be transferred to Hf as training goes on
thanks to the loss function Lc. Since H̃p and Hf are coupled
during training, at inference time, the domain transfer block will
try to extract Hf with meaningful pitch and energy information.
Later, Hf will be provided directly to phonetic embeddings Ht

as a substitute for H̃p.

Waveform generator and discriminator (G & D). In con-
ventional approaches, it is common to design a decoder fol-
lowing the encoders to generate intermediate speech represen-
tations (e.g. Mel-spectrograms). However, despite our decision
to design a Mel-spectrogram-free structure to keep the model
lightweight and inexpensive, our approach still works well. In
this module, a fixed-length segment of hidden embeddings He

is used as the input of generator G during training. Generator G
then upsamples its input to produce raw waveforms, finalizing
a fully end-to-end process. Discriminator D attempts to deter-
mine whether its input is synthesized or recorded reference.

3.2. Training losses

We adopt the architecture of the generator and discriminator in
Hifi-GAN [12]. The discriminator block D contains two sub-
modules: multi-period discriminator (MPD) and multi-scale
discriminator (MSD). Each submodule includes multiple sub-
discriminators which handle audio inputs in different period-
icities in the case of MPD and in different scales in the case
of MSD. Similar to [12], we train the waveform generation and
the discriminator networks with the objective functions used for
LSGAN [25]:

LGAN (D;G) = Ev,s

[
K∑

k=1

(Dk(v)− 1)2 + (Dk(G(s)))2
]
,

LGAN (G;D) = Es

[
K∑

k=1

(Dk(G(s))− 1)2
]
, (3)

where v denotes the ground-truth waveforms in different scales
or periodicities, s represents He, K is the total number of sub-
discriminators and Dk indicates the sub-discriminator in either
MPD or MSD. Feature matching loss [26] is additionally ap-
plied to the generator:

Lfeat(G;D) = Ex,s

[
K∑

k=1

T∑
i=1

1

Ni
‖Di

k(x)−Di
k(G(s))‖1

]
,

(4)
where T indicates the number of layers in the sub-discriminator
Dk, Ni is the total number of features in the ith layer, and Di

represents the features of that layer. Additionally, to further

Table 1: The detailed architecture of the proposed model

LSRA

Attention branch: 2-head attention
Convolution branch: 2-head convolution
(Conv-3-64-RB −→ Conv-3-32-RB
−→ Conv-3-16-RB −→ Conv-3-32-RB
−→ Conv-3-64-RB −→ Conv-3-128-RB
for each head)

Conv1D Conv-9-1024-R −→ Conv-1-256-Dropout(0.5)

Et, Ef 256-dim embedding −→ 2×lite-FFT
Ep 2×lite-FFT
A Scaled dot-product attention
P Conv-3-256-RB-Dropout(0.5)×2 −→ Linear-1

p, e Conv-3-256-RB-Dropout(0.5) −→ Linear-1
B stands for batch normalization, and R for ReLU acti-
vation. Conv-i-j denotes a convolution with kernel size i
and channel j, Linear-1 denotes a linear layer with output
feature dimension 1, and p, e indicate pitch and energy pre-
dictors. Architectures of G and D are the same as in [12].

enhance the stability, we apply an auxiliary loss called multi-
resolution short-time Fourier transform (STFT) loss [13], de-
noted as Lmrstft. It captures the dissimilarity between the
STFTs of the generated and ground-truth waveforms in mul-
tiple configurations (e.g. frame size, hop size, FFT size). To
this end, the final loss is calculated as follows:

LG = LGAN (D;G) + λfLfeat(G;D) + Ldur

+λmLmrstft + Lp + Le + λcLc,
(5)

LD = LGAN (G;D), (6)
where λf , λm and λc are set to be 2, 30, and 5, respectively.

4. Experiments and results
4.1. Dataset and model configurations

We train our model using the LJSpeech corpus [27]. For Mel-
spectrogram configurations, we set the window size, hop size,
and fast Fourier transform (FFT) size to be 1024, 256, and 1024,
respectively, with a sampling rate of 22,050 Hz. We use the
AdamW [28] optimizer with β1 = 0.8 and β2 = 0.99. The
learning rate is set to 0.0002, then it is decayed with a factor
of 0.999 during training. The batch size is set to 16. We train
the model for one million steps, but we disable the effect of Lc

loss up to two hundred thousand steps. Table 1 shows detailed
components of the architecture of our model.

4.2. Results

We show the effectiveness of our model by making comparisons
in various aspects with the following baseline TTS frameworks:

• Tacotron 2 feature predictor [2] + Hifi-GAN vocoder
• FastSpeech 2 feature predictor [6] + Hifi-GAN vocoder

Since our proposed model utilizes the generator adopted from
Hifi-GAN, we use it as the vocoder for Tacotron 2 and Fast-
Speech 2 models for fair comparisons.
Inference speed, complexity and model size. As shown in Ta-
ble 2, our model requires only 13.4 million parameters, which
is less than half that of Tacotron 2 and FastSpeech 2. On the
other hand, in order to demonstrate that our model can gener-
ate speech audio speedily in CPU environment, we measure the
real-time factor (RTF), which basically denotes how much time
is needed to generate one second of audio.

We set up a consistent environment to generate speech us-
ing every model for fair comparisons. We use an Intel(R)
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Table 2: Comparisons between our proposed model and other TTS frameworks

Model # params (M) RTF GMACs MOS PER (%)

Tacotron 2 + Hifi-GAN 29.4 0.71± 0.034 100.5 3.88± 0.12 10.19
FastSpeech 2 + Hifi-GAN 28.4 0.22± 0.015 39.3 3.76± 0.11 9.49

Proposed model 13.4 0.14± 0.013 27.0 3.84± 0.11 5.75

RTFs and MACs are calculated after synthesizing speech from text input which consists of 101 phonemes.
For RTFs, the process is iterated over 100 times and the averaged value is taken.

Figure 2: Pitch and energy contours of synthesized speech using
three settings: (a) Only Ht, (b) Only Hf, (c) Both Ht and Hf.

Core(TM) i7-7700K CPU @ 4.20 GHz with a single thread
for performing inference. As seen in Table 2, our model can
generate audio samples about 7 times faster than real-time and
about 5 and 1.6 times faster than Tacotron 2 and FastSpeech 2,
respectively. One of the reasons for this is that during the infer-
ence stage, phonetic embeddings Ht and transferred prosody Hf

are calculated in parallel fashion so that we can save valuable
generation time. This additionally contributes to having lower
multiply-accumulate operations (MACs). As shown in Table 2,
our model uses only 27.0 GMACs, which is significantly less
costly than both Tacotron 2 and FastSpeech 2. In our experi-
ments, all RTFs seem to meet the real-time requirement, as we
use a fairly powerful CPU. However, in practical on-device ap-
plications, less processing power will be available; we expect
that this is when our model will be most effective.
Evaluation. To subjectively measure the speech quality, we
conduct a test in which fourteen candidates were asked to inde-
pendently rate the quality of fifteen generated utterances2 with
the scores ranging from 1 to 5 under the following criteria, or-
dered from highest to lowest importance: stability to noise and
artifacts, good pronunciation, naturalness. After that, we cal-
culate the mean opinion score (MOS) for each model. As shown
in Table 2, our model obtains a MOS of 3.84, compared to 3.76
of FastSpeech 2. Although the MOS result for Tacotron 2 is
slightly higher than ours due to the adoption of autoregressive
modeling, two scores are statistically insignificant.

In addition, we conduct an automatic speech recognition
(ASR) task to investigate the intelligibility of our model and
the two baselines. For each model, we create a separate cor-
pus from the available LJSpeech transcripts. These three new
LJSpeech datasets are used to train three different ASR mod-
els using the Listen, Attend and Spell (LAS) model [29]. The
results are shown in the PER column in Table 2. We see that
the ASR task achieves the best performance when using speech
generated from our model, as it results in the lowest phoneme

2Audio samples are available at: https://dsp136.github.io/2021-04-
01-interspeech-samples/

Table 3: ASR results corresponding to ablation inference

PER(a) (%) PER(b) (%) PER(c) (%)

5.07 34.23 5.75

error rate (PER). We observe that speech generated from Fast-
Speech 2 is occasionally unstable due to noise and artifacts,
while speech synthesized from Tacotron 2 is prone to mispro-
nunciation or repeated words in spite of high naturalness. The
separate training the TTS model and vocoder may be another
reason for the higher PERs of FastSpeech 2 and Tacotron 2.

4.3. Ablation inference

At inference time, our model normally uses the combination of
phonetic embeddings Ht and prosody embeddings Hf to gener-
ate speech. We run ablation studies to investigate the impact
of this step by deliberately synthesizing speech using three set-
tings: (a) use only Ht, (b) use only Hf, (c) use both Ht and Hf.

Fig. 2 shows the pitch and energy contours of speech gen-
erated using the three settings. As expected, for case (a), the
contours of pitch and energy are clearly flat, which implies that
no prosodic information resides in phonetic embeddings Ht. In
contrast, for case (b), diverse prosodic information is given to
the synthesized speech, as observed in the contours. Interest-
ingly, generated speech in case (c) tends to follow a similar
trend of prosody compared to case (b).

We also perform ASR tasks for the synthesized speech from
cases (a), (b) and (c). The obtained phoneme error rates are
shown in Table 3 as PER(a), PER(b) and PER(c), respectively.
Unsurprisingly, PER(a) is much smaller than PER(b) (5.07% vs
34.23%), as case (b) omits all phonetic information. Interest-
ingly, PER(a) is lower than PER(c). We believe that in setting
(c), the presence of prosody makes the recognition task more
difficult. This result also suggests that removing prosodic infor-
mation before training may be a promising direction to improve
the performance of ASR.

5. Conclusion
In this paper, we proposed a TTS model that directly gener-
ates speech waveforms from text inputs. Since the model is
lightweight and it can synthesize speech rapidly, it is partic-
ularly suitable for on-device TTS applications. Additionally,
by leveraging the concept of domain transfer, the model ex-
tracts prosodic information from text inputs. We confirm that
the quality of generated speech is high, as expressed by both
subjective and objective tests. Interesting research directions
for the future may include investigating a more effective simi-
larity loss function rather than the simple L1 loss, and exploring
different discriminator architectures.
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