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Abstract
This paper proposes a multi-band harmonic-plus-noise (HN)
Parallel WaveGAN (PWG) vocoder. To generate a high-
fidelity speech signal, it is important to well-reflect the
harmonic-noise characteristics of the speech waveform in the
time-frequency domain. However, it is difficult for the con-
ventional PWG model to accurately match this condition,
as its single generator inefficiently represents the compli-
cated nature of harmonic-noise structures. In the proposed
method, the HN WaveNet models are employed to overcome
this limitation, which enable the separate generation of the
harmonic and noise components of speech signals from the
pitch-dependent sine wave and Gaussian noise sources, re-
spectively. Then, the energy ratios between harmonic and
noise components in multiple frequency bands (i.e., subband
harmonicities) are predicted by an additional harmonicity es-
timator. Weighted by the estimated harmonicities, the gain
of harmonic and noise components in each subband is ad-
justed, and finally mixed together to compose the full-band
speech signal. Subjective evaluation results showed that the
proposed method significantly improved the perceptual qual-
ity of the synthesized speech.
Index Terms: Speech synthesis, neural vocoder, Parallel
WaveGAN, multi-band harmonic-plus-noise model

1. Introduction
The neural vocoder, which generates speech waveform from
conditional acoustic features, has significantly improved the
quality of text-to-speech (TTS) systems [1–7]. Neural
vocoders mainly consist of two classes: an auto-regressive
(AR) model that recursively generates a single speech sam-
ple conditioned by previously generated samples [1–4] and
a non-AR model that generates a speech waveform in paral-
lel [5–7]. Recently, non-AR neural vocoders have attracted
interest thanks to their fast generation speed and reasonable
quality of synthesis.

In our previous work, we proposed a Parallel WaveGAN
(PWG) vocoder that combines a non-causal WaveNet model
with the generative adversarial networks (GANs) [7–9]. In
this model, the WaveNet generator efficiently learns the time-
frequency characteristics of realistic speech waveform by in-
volving a multi-resolution short-time Fourier transform (MR-
STFT) loss to the adversarial training process. As the model is
trained without any complicated distillation process, the PWG
can provide an easily trainable and fast waveform generation
method compared to conventional methods.

However, a single generator is insufficient to learn the
complicated nature of speech signal such as harmonic and
noise characteristics. As a result, the generated speech often
suffers from unnatural artifacts. For instance, harmonic struc-
ture can be appeared to unvoiced regions, since the model
mainly learns the behavior of periodic voice that are domi-

nant in speech. Thus, it is important to design the system to
effectively represent harmonic and noise characteristics.

In this paper, we propose a harmonic-plus-noise PWG
(HN-PWG) vocoder where two WaveNet generators jointly
learn the harmonic-noise characteristics of target speech
based on the harmonic-plus-noise model (HNM) within a
GAN framework [10–12]. In the proposed method, one
WaveNet receives the pitch-dependent sine wave as a source
signal for generating a harmonic component; whereas the
other receives the Gaussian noise for generating a noise com-
ponent. Then, each waveform is mixed together to compose
output speech. As the harmonic and noise components of the
speech signal are separately modeled by the individual gen-
erators, the quality of the output speech becomes more stable
than with conventional PWG.

To further enhance vocoding performance, we also pro-
pose a multi-band HN-PWG model, which combines the idea
of HN-PWG with the multi-band approach. In this method,
each harmonic and noise component is decomposed into its
subband signals through a set of band-pass filters (BPFs).
Then, the subband harmonicities, which are defined as the
energy ratios between the harmonic and noise components
in each subband, are predicted by an additional harmonic-
ity estimator. Weighted by the estimated subband harmonic-
ity, the gain of harmonic and noise components in each sub-
band is adjusted, and then mixed together to compose the full-
band speech signal. As the complicated frequency-dependent
harmonic-noise structure of speech signal is captured by the
external harmonicity estimator, the performance of the entire
model can be effectively improved.

We verified the outperforming performance of the pro-
posed multi-band HN-PWG in comparison to the conven-
tional methods through subjective evaluations. Specifically, it
provided a 4.03 mean opinion score (MOS) result in the TTS
scenario, which is 13% higher than that of the conventional
system.

2. Related work
There have been several studies to apply an HNM to neu-
ral vocoding systems. For instance, the harmonic-plus-noise
neural source-filter (hn-NSF) model first generates harmonic
and noise components separately. Then, it merges them by
using digital low- and high-pass filters [13, 14]. On the other
hand, the neural homomorphic model adopts a similar HNM
structure within a GAN framework [15], and shows better
quality than hn-NSF models. In the PeriodNet model [16],
the HNM is applied to the PWG vocoder, for which results
also show improvements in the perceptual quality of synthe-
sized speech.

Even though our model is similar to those vocoders in
terms of adopting the HNM, the clear difference is that our
method proposes a multi-band HNM for efficiently captur-
ing the frequency band-wise harmonic-noise characteristics
of target speech signal. Note that our multi-band approach
is similar to that of traditional parametric vocoders such as* equal contribution
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Figure 1: The waveform generators of (a) HN-PWG and (b)
multi-band HN-PWG.

multi-band mixed excitation models [17, 18]. The differ-
ence is that the proposed model directly mixes speech signals
rather than excitation signals.

3. Parallel WaveGAN with
harmonic-plus-noise models

PWG is a non-AR WaveNet model that generates a time-
domain speech waveform from the corresponding condi-
tional acoustic parameters [7–9]. It consists of a non-
causal WaveNet generator and a convolutional neural network
(CNN)-based discriminator. By combining adversarial train-
ing and the MR-STFT loss function within a GAN frame-
work [19], PWG efficiently learns the time-frequency charac-
teristics of realistic speech.

3.1. Harmonic-plus-noise Parallel WaveGAN (HN-PWG)
To improve the performance of PWG, we propose an HN-
PWG model, which involves the HNM to the PWG frame-
work. As illustrated in Fig. 1, the proposed HN-PWG model
divides a single WaveNet generator into harmonic and noise
WaveNets for modeling the harmonic and noise components
of a speech waveform, respectively. In particular, the har-
monic WaveNet receives the sine wave, Gaussian noise1, and
voicing flags2 as source signals, whereas the noise WaveNet
receives the Gaussian noise and the voicing flags as source
signals. To generate the sine wave, we adopt the method of
neural source filter model [13], which designs the instanta-
neous frequency of sine wave to follow the fundamental fre-

1Adding the Gaussian noise to the harmonic WaveNet is beneficial
to improve the synthetic quality, especially when the proposed method
is used for TTS applications. This will be further discussed in Sec-
tion 4.3.

2The voicing flags are upsampled from frame-level to sample-level
by nearest neighbor upsampling to match the time-resolution with sine
wave and noise signals. Note that the usage of voicing flags enables
each WaveNet to be effectively aware of the voicing states.

quency of target speech signal.
After harmonic and noise components are generated, they

are mixed to compose a final speech waveform. As illustrated
in Fig. 1-(a), the easiest way to compose harmonic and noise
components is by simply adding them as follows:

x “ xh ` xn, (1)

where x, xh, and xn denote output speech, harmonic, and
noise waveforms, respectively. We can refer this type (i.e.,
Eq. (1)) to a full-band model, since the harmonic and noise
components in the entire frequency range are equivalently
mixed without considering their band-wise harmonic-noise
property.

The performance of HN-PWG can be improved by con-
sidering this property through the multi-band harmonic-noise
analysis during its training and generation processes. This
will be discussed in the following section.

3.2. Multi-band HN-PWG
To further improve the performance of HN-PWG, we propose
a multi-band HN-PWG model, which structurally represents
the band-wise harmonic-noise characteristics of a speech sig-
nal. As illustrated in Fig. 1-(b), the multi-band HN-PWG de-
composes the generated harmonic and noise components into
the N number of subbands through a set of BPFs as follows:

xh,i “ xh f gi, (2)
xn,i “ xn f gi,

where f denotes the convolution operation; xh,i, xn,i, and
gi denote the harmonic and the noise waveforms and the BPF
coefficients at the ith subband, respectively. Then, the out-
put speech signal is obtained through a weighted summation
between the subband signals as follows:

x “
N´1
ÿ

i“0

“

αi ¨ xh,i ` p1´ αiq ¨ xn,i

‰

, (3)

where αi indicates a subband harmonicity that balances the
energy between harmonic and noise components in the ith
subband.

Note that the subband harmonicity αi can be treated as
a heuristic parameter, which can be estimated by rule-based
analysis methods [17, 18]. Alternatively, we design a har-
monicity estimator consisting of small CNN blocks to predict
the optimal value of αi from input acoustic features. Since
the subband harmonicity is now conditioned by acoustic fea-
tures, it can efficiently learn the harmonic-noise characteristic
of target speech, which is aligned with the characteristics of
acoustic features.

To decouple the full-band signal into the subband compo-
nents, we adopt the SincNet approach [20] that parameterizes
each BPF by using a sinc function as follows:

girks “ 2fi`1sincp2πfi`1kq ´ 2fisincp2πfikq, (4)

where rfi, fi`1s denote the cutoff frequencies of the ith sub-
band and the sinc function is defined as sincpxq “ sinpxq{x.
Note that as the sinc function has a rectangular passband in
the magnitude response, it can effectively minimize the alias-
ing effect between adjacent BPFs. For practical implementa-
tion, the filter coefficients are truncated by using a hamming
window as follows:

ĝirks “ grks ˚ wrks, (5)
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where ĝirks denotes truncated filter coefficients and wrks “
0.54 ´ 0.46 cosp2πk{Lq denotes a hamming window with a
length of L. In the original SincNet, the cut-off frequencies
of each BPF are initialized with Mel-scale and optimized dur-
ing the training process. However, in the proposed system,
we simply use the fixed cutoff frequencies that are uniformly
divided by the N number of passbands in the frequency do-
main3.

Note that all of the operations proposed in the multi-band
HN-PWG model, such as the set of BPFs and the harmonic-
ity estimator, are fully differentiable. Therefore, two HNM-
based generators, the harmonicity estimator, and the discrim-
inators can be jointly optimized during the training process.

4. Experiments
4.1. Experimental setups

4.1.1. Speech database

In the experiments, a phonetically and prosodically balanced
TTS corpus recorded by a female Korean professional speaker
was used. The speech signals were sampled at 24 kHz with
16-bit quantization. In total, 5,087 utterances (5.5 hours), 550
utterances (36 minutes), and 130 utterances (6 minutes) were
used for the training, validation, and test sets, respectively.

The acoustic features were extracted using an improved
time-frequency trajectory excitation vocoder [22] at analysis
intervals of 5 ms, including 40-dimensional line spectral fre-
quencies, the fundamental frequency, the energy, the binary
voicing flag, a 32-dimensional slowly evolving waveform,
and a 4-dimensional rapidly evolving waveform, all of which
constituted a 79-dimensional feature vector. The acoustic fea-
tures were then normalized to have zero mean and unit vari-
ance using the statistics of the training data.

4.1.2. Neural vocoders

Table 1 presents the vocoding models including their model
size and inference speed. As a baseline system, two WaveNet-
based neural vocoders, an AR Gaussian WaveNet vocoder
with a noise-shaping method [21] (S1) and a plain PWG
vocoder [7] (S2) were tested.

For the Gaussian WaveNet, a time-invariant noise-
shaping filter was obtained by averaging all spectra extracted
from the training data to apply the noise-shaping method.
This external filter was used to extract the residual signal be-
fore the training process, and its inverse filter was applied
to reconstruct the speech signal in the synthesis step. The
WaveNet systems consisted of 24 layers of dilated residual
convolution blocks with four dilation cycles. There were 128
residual and skip channels, and the filter size was set to three.
The model was trained for 1 M steps with a RAdam opti-
mizer [23]. The learning rate was set to 0.001, and this was
reduced by half every 200 K steps. The minibatch size was
set to eight, and each audio clip was set to 12 K time samples
(0.5 seconds).

For the plain PWG, the WaveNet generator consisting of
30 dilated residual blocks with three exponentially increasing
dilation cycles was used. The number of residual and skip
channels was set to 64, and the convolution filter size was
five.

For the proposed HN-PWG, we tested the two cases of
HN-PWG when the harmonic generator’s noise source is used
or not (S3 and S4, respectively) to examine the importance of

3In our preliminary experiments, we also tried BPFs defined by Mel-
scale cutoff frequencies, but found that there was no clear difference in
their perceptual quality.

additional noise as source signal. Note that the model with-
out additional noise (S3) provides the same generator con-
figuration with PeriodNet [16], where the sine wave is only
used for the periodic (i.e., harmonic) generator. In detail,
the harmonic WaveNet consisted of 20 dilated residual blocks
with two exponentially increasing dilation cycles; whereas the
noise WaveNet consisted of 10 residual blocks with one expo-
nentially increasing dilation cycle. Similar to the plain PWG,
the number of residual and skip channels was set to 64, and
the convolution filter size was five. Note that the network size
was also set to be the same as the plain PWG for a fair com-
parison. To provide continuously varying voicing information
to the harmonic and noise WaveNets, the moving average fil-
ter with a 5 ms filter tap was applied to the upsampled voicing
flag.

For the proposed multi-band HN-PWG (S5), the struc-
tures of harmonic and noise WaveNets were set to be the same
as with HN-PWG. A total of 16 BPFs were parameterized by
windowed sinc functions with 255 filter taps. The harmonic-
ity estimator consisted of a 1-D CNN block with three con-
volution layers followed by output sigmoid layer. Each con-
volution layer consisted of 64 channels and five convolution
filters interleaved with ReLU activation. To stabilize train-
ing, the last convolution layer was initialized with zeros, so
as to equivalently mix the harmonic and noise components
at early training stage (i.e., αi “ 0.5). Across all vocod-
ing models, the input auxiliary features were upsampled by
nearest neighbor up-sampling followed by 2-D convolutions
so that the time-resolution of the auxiliary features matched
the sampling rate of the speech waveforms [24, 25]. Weight
normalization was applied to all convolutional layers for all
neural vocoders [26].

During the training of GAN-based vocoders, we used
voicing-aware conditional discriminators, which efficiently
guide the generator to learn voiced and unvoiced character-
istics of speech signal. The detailed setup was the same as in
original paper [9]. In addition, the MR-STFT loss was com-
puted by summing three different STFT losses, as described
for the original PWG [7]. The weight of the generator’s ad-
versarial loss term was chosen to be 4.0. The models were
trained for 400 K steps with a RAdam optimizer [23]. The
discriminator was fixed for the first 100 K steps, and both the
generator and discriminator were jointly trained afterwards.
The minibatch size was set to 4, and the length of each audio
clip was set to 24 K time samples (1.0 second). The initial
learning rate was set to 0.0001 and 0.00005 for the generator
and discriminator, respectively. The learning rate was reduced
by half every 200 K steps.

4.2. Evaluation
To evaluate the perceptual quality of the vocoder itself, MOS
listening tests in the analysis-synthesis scenario4. In particu-
lar, the speech samples were first generated by vocoders using
ground-truth acoustic features. Then, a total of 20 native Ko-
rean listeners were asked to score the randomly selected 15
synthesized utterances from the test set one of the following
five possible MOS responses: 1 = Bad, 2 = Poor, 3 = Fair, 4
= Good, 5 = Excellent. Table 1 summarizes the MOS test re-
sults, the trends of which are analyzed as follows: (1) Both
HN-PWG and multi-band HN-PWG provided significantly
better perceptual quality of synthesized speech than the con-
ventional PWG model while maintaining models complexity
(S2 vs. S3, S4, and S5). In particular, the proposed multi-
band HN-PWG achieved 4.29 MOS, which was 23% higher
than the plain PWG (S2 vs. S5). (2) The quality of HN-PWG

4Generated audio samples are available at the following URL:
https://min-jae.github.io/interspeech2021/
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Table 1. The model size, inference speed, and MOS results with 95% confidence intervals: Acoustic features extracted from the
recorded speech signal were used to compose the input acoustic features. The MOS results for highest score is in bold font.

Label Model Use of
HN model

Input signals
for H-WaveNet

Type of
HN model

Model
size (M)

Inference
speed MOS

S1 WaveNet [21] – – – 3.81 0.34ˆ 10´2 4.22˘ 0.12
S2 PWG [7] – – – 0.94 50.38 3.46˘ 0.37
S3 HN-PWG w/o noise [16] Yes Sine + V/UV Full-band 0.94 47.91 4.02˘ 0.14
S4 HN-PWG Yes Sine + noise + V/UV Full-band 0.94 47.93 4.18˘ 0.15
S5 Multi-band HN-PWG Yes Sine + noise + V/UV Multi-band 0.99 47.87 4.29˘ 0.12
S6 Recordings – – – – – 4.41˘ 0.12

Si: i
th

system; HN: harmonic-plus-noise; PWG: Parallel WaveGAN; H-WaveNet: harmonic WaveNet; V/UV: voicing flags upsampled from frame-level to sample-level.
Note that inference speed, k, indicates that a system was able to generate waveforms k times faster than real-time. This evaluation was conducted on a server with a single
NVIDIA Tesla V100 GPU.

Table 2. Subjective MOS test results with 95% confidence
intervals for the TTS systems with respect to the different

vocoding models. The MOS results for highest score is in bold
font.

Label Model MOS
S-T1 WaveNet [21] 4.03˘ 0.19
S-T2 PWG [7] 3.56˘ 0.28
S-T3 HN-PWG w/o noise 2.60˘ 0.22
S-T4 HN-PWG 4.01˘ 0.17
S-T5 Multi-band HN-PWG 4.03˘ 0.16

S6 Recordings 4.41˘ 0.12

S-Ti: i
th

system that generates speech waveform from the acoustic features pre-
dicted by TTS model.

could be improved by using an additional noise source for the
harmonic WaveNet (S3 vs. S4). (3) The quality of multi-
band HN-PWG was better than HN-PWG (S4 vs. S5). This
indicates that the proposed multi-band approach was benefi-
cial for improving the quality of HN-PWG. (4) The quality of
multi-band HN-PWG was even better than the baseline AR
WaveNet (S1 vs. S5), which was not for plain PWG (S1 vs.
S2).

As shown in Fig. 2, the harmonic and noise components
generated by the multi-band HN-PWG model were clearly
decorrelated compared to those generated by the HN-PWG
model. We conjecture that this is because our multi-band
method efficiently guided each harmonic and noise WaveNet
to learn the desired components during the training process.

4.3. Text-to-speech

To evaluate vocoding performance in the TTS scenario, we
used an acoustic model based on Tacotron 2 with an external
duration predictor [27, 28] for fast and stable generation as
well as competitive synthesis quality.

To generate acoustic features, linguistic features were first
extracted from the input text sequence. Then, the durations
of each phoneme were predicted by a long short-term mem-
ory (LSTM)-based duration predictor. Based on the estimated
durations, the phoneme-level linguistic features were upsam-
pled to that of the frame level. Finally, the Tacotron2-style
acoustic model predicted the acoustic features from the up-
sampled linguistic features. To improve the spectral clarity
of the synthesized speech, the spectral domain sharpening fil-
ter [22] was applied as a post-processing technique. By in-
putting the resulting acoustic parameters, the vocoder models
generated the time-domain speech signal. More setup details
for the acoustic model are given in our previous work [27].

To evaluate the quality of the generated speech samples,
the MOS tests were performed. The test setups were the same
as those described in Section 4.2. Table 2 shows the results

Figure 2: The spectrograms of harmonic (left side) and noise
(right side) waveforms generated by the (a) HN-PWG (S4) and

(b) multi-band HN-PWG (S5) models.

of the MOS tests, the findings of which are summarized as
follows: (1) In the TTS scenario, the HN-PWG (w/o noise)
provided significantly degraded quality compared to the sys-
tem using noise source (S-T3 vs. S-T4). We found that the
additional noise source was crucial for improving the robust-
ness of HN-PWG when the acoustic features contain distor-
tion through TTS prediction, which was not discovered in the
study of PeriodNet [16]. (2) Even though the input acoustic
features contained prediction errors, the HN-PWGs still pre-
sented better quality than the plain PWG (S-T2 vs. S-T4 and
S-T5). (3) Finally, the multi-band HN-PWG within a TTS
framework achieved 4.03 MOS, which was 13% higher than
the plain PWG (S-T2 vs. S-T5).

5. Conclusion
In this paper, we proposed a multi-band HN-PWG vocoder
to improve the PWG-based non-AR neural vocoding system.
By guiding the neural vocoder to learn the complicated mul-
tiple frequency band-dependent harmonic and noise charac-
teristics of speech signal, we successfully improved the qual-
ity of the PWG vocoder. The experimental results verified
that the proposed multi-band HN-PWG model provided better
synthesis quality within both analysis-synthesis and TTS sce-
narios. Future work includes improving the synthesis speed
of HN-PWG by utilizing the knowledge of speech signal pro-
cessing.
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