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ABSTRACT

This paper proposes voicing-aware conditional discriminators for
Parallel WaveGAN-based waveform synthesis systems. In this
framework, we adopt a projection-based conditioning method
that can significantly improve the discriminator’s performance.
Furthermore, the conventional discriminator is separated into
two waveform discriminators for modeling voiced and unvoiced
speech. As each discriminator learns the distinctive character-
istics of the harmonic and noise components, respectively, the
adversarial training process becomes more efficient, allowing the
generator to produce more realistic speech waveforms. Subjective
test results demonstrate the superiority of the proposed method
over the conventional Parallel WaveGAN and WaveNet systems.
In particular, our speaker-independently trained model within a
FastSpeech 2 based text-to-speech framework achieves the mean
opinion scores of 4.20, 4.18, 4.21, and 4.31 for four Japanese
speakers, respectively.

Index Terms— Text-to-speech, neural vocoder, generative
adversarial networks, waveform synthesis

1. INTRODUCTION

Deep generative models in text-to-speech (TTS) frameworks have
significantly improved the perceptual quality of synthetic speech
signals [1, 2]. In particular, the autoregressive generative models,
such as WaveNet, have shown superior quality over conventional
parametric vocoders [3–7]. However, they suffer from slow gen-
eration due to their autoregressive nature and thus are limited in
their applications to real-time scenarios.

To achieve real-time TTS systems, non-autoregressive wave-
form synthesis models have been proposed based on teacher-
student frameworks [8,9], normalizing flows [10,11], or generative
adversarial networks (GANs) [12, 13]. Specifically, in our previ-
ous work, we proposed the Parallel WaveGAN methods [14, 15],
characterized by efficient training and fast inference while main-
taining a quality that is competitive to the state-of-the-art Parallel
WaveNet. However, as it is insufficient for a single discriminator
to distinguish the complex nature of speech signal — e.g., voiced
and unvoiced characteristics — the generated speech often suffers
from unnatural artifacts. In addition, this problem becomes more
severe when the training database has more diversity such as in
the scenario of speaker-independent modeling.

To address the aforementioned problems, we propose voicing-
aware conditional discriminators for Parallel WaveGAN. In this
method, we adopt a projection-based conditioning framework that

incorporates acoustic features into the discriminators [16]. This
enables the discriminator to classify the input speech well to be
consistent with the given acoustic features. Furthermore, we in-
troduce two separate voicing-aware discriminators that individu-
ally model the voiced and unvoiced speech, respectively. In detail,
one discriminator is designed to have long receptive fields for cap-
turing slowly varying harmonic components, which mainly rep-
resents the voiced speech; whereas the other has small receptive
fields for capturing rapidly varying noise components of unvoiced
speech. Because each discriminator learns the distinctive charac-
teristics of the harmonic and noise components, respectively, the
adversarial training process becomes more effective.

We investigate the performance of our proposed method by
conducting perceptual listening tests in a TTS framework. Specifi-
cally, a speaker-independently trained Parallel WaveGAN with the
FastSpeech 2 acoustic model significantly outperforms the con-
ventional Parallel WaveGAN and similarly configured WaveNet
systems, achieving mean opinion scores of 4.20, 4.18, 4.21, and
4.31 for four Japanese speakers, respectively.

2. RELATED WORK

There have been several attempts to improve the discriminator’s
performance for GAN-based neural waveform synthesis systems.
For instance, MelGAN [13] and VocGAN [17] employ multi-scale
discriminators to learn the waveform structure on different time
scales. GAN-TTS [18] adopts a blend of multiple conditional
and unconditional discriminators based on multi-frequency ran-
dom windows. Although these multi-resolution architectures are
found to be effective for high perceptual quality, their methods
tend to require complicated discriminators (e.g., hierarchically-
nested joint conditional and unconditional discriminators [17]),
which are more difficult to train. To keep the discriminator simple
yet effective, our proposed method adopts two separate discrim-
inators, which can explicitly focus on the distinctive voiced and
unvoiced characteristics of speech.

3. METHOD

3.1. Parallel WaveGAN

Parallel WaveGAN is a non-autoregressive WaveNet model that
generates a time-domain speech waveform from the correspond-
ing conditional acoustic parameters [14]. Specifically, the conven-
tional Parallel WaveGAN consists of a non-causal WaveNet gen-
erator, G, and a single convolutional neural network (CNN) dis-
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Fig. 1. Block diagram of (a) a conventional and (b) the proposed
discriminators. Note that in the proposed method, two separate dis-
criminators with different dilation factors of the 1-D convolutional
neural network (CNN) blocks were used for modeling the voiced
and unvoiced segments, respectively.

criminator, D. Based on GANs [19], the generator learns a distri-
bution of realistic waveforms by trying to deceive the discrimina-
tor into recognizing the generated samples as real. Moreover, the
discriminator is trained to correctly classify the generated sample
as fake while classifying the ground truth as real. By combining
adversarial training with an auxiliary multi-resolution short-time
Fourier transform (STFT) loss function, Parallel WaveGAN learns
the time-frequency characteristics of realistic speech efficiently.

3.2. Proposed Parallel WaveGAN with voicing-aware condi-
tional discriminators

Fig. 1 depicts an overview of the Parallel WaveGAN’s discrimi-
nator. Compared with the conventional method (Fig. 1(a)), there
are two main improvements in the proposed method (Fig. 1(b)), as
follows. First, we adopt a projection-based conditioning method
where the acoustic features are incorporated into the discriminator
as conditional inputs [16]. This helps the discriminator to better
classify the input signals to be consistent with the given condi-
tional features. Second, we replace the conventional discriminator
with voicing-aware ones using a voiced and unvoiced binary flag
(V/UV). Considering the fact that the voiced and unvoiced seg-
ments of speech signals have distinctive characteristics, the two
separate discriminators independently operate to capture each seg-
ment, respectively. Note that voicing masks are used to make each
discriminator see only the region of its interest.

The voiced segment can be characterized by slowly evolving
harmonic components. To control these components, we design
the first discriminator with a dilated CNN [3]. Note that the use
of dilated convolution allows the discriminator to increase the size
of the receptive field while keeping a small number of parame-
ters. With a sufficient size of the receptive field, the discriminator
not only covers long-term variations of the harmonic component,
but also penalizes any unwanted aperiodic noise components in
the voiced regions. On the other hand, the second discriminator is
composed of a non-dilated CNN with a small receptive field (i.e.,
a dilation factor of 1 in the 1-D CNN block). Because the char-

acteristics of the noise component vary rapidly, employing a short
window is advantageous to focus on the detailed high-frequency
structure of speech.

3.3. Training objectives

To train the proposed models, we adopt the least-squares GANs
thanks to their training stability [20]. The training objectives for
the discriminators and the generator are defined as follows:

min
D

Ez,h[(1−D(x,h))2]

+ Ez,h

[
D(G(z,h),h)2

]
, ∀D ∈ {Dv, Duv} (1)

min
G

Ex,z,h [Lmr stft(x, G(z,h))]

+
1

2
λadv Ez,h

 ∑
D∈{Dv,Duv}

(1−D(G(z,h),h))2

 , (2)

where z, h, and x denote the Gaussian noise, conditional acous-
tic features, and the target speech waveform, respectively; Dv and
Duv are the voiced and unvoiced discriminators, respectively; and
λadv represents a hyperparameter that balances the two adversar-
ial losses and the multi-resolution STFT loss defined as follows:

Lmr stft(x, x̂) =
1

M

M∑
m=1

L
(m)
stft (x, x̂), (3)

where x̂ represents the generated waveform; and L(m)
stft (x, x̂) de-

notes the mth STFT loss, represented by the sum of spectral con-
vergence and log STFT magnitude losses1 [21]. Note that unlike
the original Parallel WaveGAN [14], the discriminator is now di-
vided into distinctive voiced and unvoiced parts, and the generator
is designed to deceive both of them.

4. EXPERIMENTS

4.1. Experimental setup

4.1.1. Data and feature configurations

The experiments used four phonetically and prosodically rich
speech corpora recorded by two female (F1, F2) and two male
(M1, M2) Japanese professional speakers. The speech signals
were sampled at 24 kHz, and each sample was quantized by 16
bits. Each corpus included 5,000 utterances, among which 4,500,
250, and 250 samples were used for training, validation, and eval-
uation, respectively. The training data size for each speaker was
between 5.5 and 5.9 hours.

The acoustic features were extracted using an improved
time-frequency trajectory excitation vocoder at the analysis in-
tervals of 5 ms [22] and included 40-dimensional line spectral
frequencies, the fundamental frequency, the energy, the binary
V/UV flag, a 32-dimensional slowly evolving waveform, and a 4-
dimensional rapidly evolving waveform, all of which constituted
a 79-dimensional feature vector2. The acoustic features were then

1The detailed setups for designing the multi-resolution STFT loss are the
same as those in the original Parallel WaveGAN [14].

2We have also tried mel-spectrograms as acoustic features but found that
the vocoder parameters were more effective to avoid buzzy synthetic speech.
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Table 1. The dilation factors and receptive fields in the 1-D CNN
blocks of the voicing-aware discriminators.

Discriminator Dilation factors Receptive field
Dv [1, 2, 4, 8, 16, 32] 127
Duv [1, 1, 1, 1, 1, 1] 13

normalized to have zero mean and unit variance using the statistics
of the training data.

4.1.2. Model details

The proposed Parallel WaveGAN consists of a WaveNet-based
generator and voiced and unvoiced discriminators. The genera-
tor comprises 30 layers of dilated residual 1-D convolution blocks
with three exponentially increasing dilation cycles [14]. The num-
ber of residual and skip channels was set to 64, and the convolution
filter size was set to 5. The size of the receptive field for the gen-
erator was 12,277. The discriminators for the voiced and unvoiced
regions were each composed of a 1-D CNN block and 1-by-1 con-
volution layers. Each 1-D CNN block contains six convolution
layers interleaved with leaky ReLU activation. The number of
channels and kernel size in the 1-D CNN blocks were set to 64
and 3, respectively. The dilation factors and receptive fields3 of
the 1-D CNN blocks for the voicing-aware discriminator are sum-
marized in Table 1. For conditional input, a 1-D convolution with
the kernel size of the discriminator’s receptive field was used be-
fore the inner product projection. The number of channels was 64,
the same as in the 1-D CNN block.

At the training stage, the multi-resolution STFT loss was com-
puted by the sum of three different STFT losses, as described
in Parallel WaveGAN [14]. The hyperparameter λadv in equa-
tion (2) was chosen to be 4.0. The models were trained for 400K
steps with a RAdam optimizer with β1 = 0.9, β2 = 0.999, and
ε = 1e−6 [23]. The discriminators were fixed for the first 100K
steps, and the models were jointly trained afterwards. The mini-
batch size was set to eight, and the length of each audio clip was
set to 24K time samples (1.0 second). The initial learning rate was
set to 0.0001 for both the generator and discriminators. The learn-
ing rate was reduced by half for every 200K steps. We trained
Parallel WaveGAN models with two NVIDIA Tesla V100 GPUs,
which took about 44 and 58 hours for conventional and proposed
Parallel WaveGAN systems, respectively.

To validate our discriminator design choices, we investigated
six Parallel WaveGAN systems with different discriminator con-
figurations, as described in Table 2. Note that all the Parallel
WaveGAN systems used the same generator architecture and train-
ing configurations as described above; they only differed in the
discriminator settings. Therefore, the proposed method retained
the original Parallel WaveGAN’s fast inference speed.

As a baseline system, we used the autoregressive Gaussian
WaveNet [9], which consists of 24 layers of dilated residual con-
volution blocks with exponentially increasing four dilation cycles.
The number of residual and skip channels was set to 128, and the
filter size was set to 3. The model was trained for 1M steps with a
RAdam optimizer. The learning rate was set to 0.001 and reduced
by half for every 200K steps. The mini-batch size was set to eight,

3The receptive field for the discriminator of the voiced regions was kept
not too large because a larger receptive field poses training difficulty.
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Fig. 2. Spectrograms of (a) natural speech, (b) generated speech
from the conventional Parallel WaveGAN (S2), and (c) generated
speech from the proposed Parallel WaveGAN (S7). As demonstrated
in rectangle areas, our proposed method is able to model spectral
harmonics more accurately.

and the length of each audio clip was set to 12 K time samples
(0.5 seconds). The log-scale parameters of Gaussian were clipped
at −9.0 during training to reduce noisy artifacts [9].

Across all the neural vocoders, the input auxiliary features
were up-sampled by nearest neighbor interpolation followed by
1-D convolutions so that the time resolution of the auxiliary fea-
tures matched the sampling rate of the speech waveforms [12,24].
For the models using conditional discriminators, the up-sampled
features were used as the conditional input. Note that the bi-
nary V/UV flag used in the voicing-aware discriminator was up-
sampled to the sample level by repetition as an exception. All the
vocoder models were trained in a speaker-independent manner by
putting all the speaker’s data together.

4.2. Evaluation

We performed mean opinion score (MOS)4 tests to investigate the
effectiveness of our proposed method. Seventeen native Japanese
speakers were asked to make quality judgments about the synthe-
sized speech samples using the following five possible responses:
1 = Bad; 2 = Poor; 3 = Fair; 4 = Good; and 5 = Excellent. In total,
20 utterances were randomly selected from the evaluation set and
were then synthesized using the different models.

Table 2 shows the MOS test results with respect to different
neural vocoders. The findings can be analyzed as follows. (1)
Among all speakers, the Parallel WaveGAN system using the con-
ditional discriminator (S3) obtained a better score than the base-
line WaveNet (S1) and Parallel WaveGAN (S2) systems. The
results confirmed the effectiveness of incorporating acoustic fea-
tures into the discriminator through conditional information. (2)
The systems using poorly configured voicing-aware discrimina-
tors (S4, S5, and S6) performed worse than S3. More specifically,
they performed even worse than the baseline Parallel WaveGAN
(S2) in some cases (e.g., comparing S2 and S5). Notably, the syn-
thetic male voices contained buzzy noise, which resulted in signif-
icantly lower scores than the baseline Parallel WaveGAN. (3) Fi-
nally, the system with the proposed voicing-aware discriminators
(S7) obtained the best scores and consistently outperformed the

4Audio samples are available at the following URL:
https://r9y9.github.io/demos/projects/icassp2021/
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Table 2. MOS test results with 95% confidence intervals in analysis/synthesis: The speech samples were generated using the acoustic
features extracted from the recorded speech. PWG denotes Parallel WaveGAN for short. Note that systems S2 and S3 usedDv as the primary
discriminator. All the models were trained in a speaker-independent manner.

System Model Voiced Unvoiced Discriminator MOS
segments segments conditioning F1 F2 M1 M2

S1 WaveNet - - - 3.64±0.12 3.83±0.11 3.33±0.12 3.13±0.11
S2 PWG - - - 3.61±0.11 3.55±0.11 3.57±0.12 3.61±0.11
S3 PWG-cGAN-D - - Yes 4.04±0.10 3.95±0.10 3.91±0.11 3.97±0.10
S4 PWG-V/UV-D Dv Dv Yes 3.60±0.12 3.59±0.11 3.34±0.11 3.48±0.11
S5 PWG-V/UV-D Duv Dv Yes 3.67±0.11 3.48±0.11 3.29±0.12 3.38±0.11
S6 PWG-V/UV-D Duv Duv Yes 3.77±0.11 3.88±0.10 3.57±0.11 3.34±0.11
S7 PWG-V/UV-D (proposed) Dv Duv Yes 4.11±0.10 4.05±0.10 4.04±0.10 4.08±0.10
R1 Recordings - - - 4.63±0.08 4.67±0.07 4.61±0.08 4.64±0.08

Table 3. MOS test results with 95% confidence intervals: Acoustic features generated from the FastSpeech 2 acoustic model were used to
compose the input auxiliary features.

System Model MOS
F1 F2 M1 M2

S1 FastSpeech 2 + WaveNet 3.90±0.11 3.81±0.10 3.43±0.11 3.09±0.10
S2 FastSpeech 2 + PWG 3.76±0.11 3.62±0.11 3.63±0.11 3.78±0.10
S3 FastSpeech 2 + PWG-cGAN-D 4.02±0.10 4.03±0.10 4.16±0.10 4.06±0.10
S7 FastSpeech 2 + PWG-V/UV-D (proposed) 4.20±0.10 4.18±0.09 4.21±0.09 4.31±0.09
R1 Recordings 4.63±0.08 4.67±0.07 4.61±0.08 4.64±0.08

other systems (from S1 to S6). The results proved the importance
of the discriminator design and the effectiveness of our proposed
approach. The benefits of our method can also be confirmed in
spectrogram visualization; as shown in Fig.2, the proposed method
was able to better reconstruct the spectral harmonics.

4.3. Text-to-speech

To further verify the effectiveness of the proposed method within
the TTS framework, we combined the proposed Parallel Wave-
GAN with a FastSpeech 2 based acoustic model [25]. This model
was configured based on the setup of FastSpeech 2, except for a
few modifications as follows: we changed the variance predictor
module to operate on phoneme-level rather than frame-level [26].
Manually annotated phoneme alignment was used instead of per-
forming forced alignment. The model used accent information as
an external input to better model pitch accents of Japanese [27].

For evaluation, we trained four speaker-dependent acoustic
models. At the training stage, a dynamic batch size with an av-
erage of 24 samples was used for making a mini-batch [28, 29],
and the models were trained for 200K iterations. In the synthesis
step, the input phoneme and accent sequences were converted to
the corresponding acoustic parameters by the FastSpeech 2 model.
By inputting the resulting acoustic parameters, the vocoder models
generated the time-domain speech signals.

To evaluate the quality of the generated speech samples, we
performed naturalness MOS tests. The test setups were the same
as those described in section 4.2, except that we excluded the sys-
tems with poorly designed discriminators (S4, S5, and S6 in Ta-
ble 2, respectively)

The results of the MOS tests are shown in Table 3. Sim-
ilar to the analysis/synthesis results, the proposed system with

voicing-aware conditional discriminators (S7) achieved the best
scores among all speakers. In particular, the proposed method sig-
nificantly outperformed the baseline WaveNet (S1) and Parallel
WaveGAN (S2) systems, and even the improved Parallel Wave-
GAN with conditional discriminator (S3). Note that the MOS of
the TTS samples tended to be higher than that of analysis/synthesis
samples. This result was because the unwanted artifacts produced
by the analysis/synthesis process were statistically excluded dur-
ing the generation process. Most listeners preferred consistent re-
sults of the predicted duration and accent than those of the ground-
truth.

5. CONCLUSION

We proposed voicing-aware conditional discriminators for a Paral-
lel WaveGAN-based TTS system. Our framework incorporated a
projection-based conditioning method into the discriminator and
divided it into two separate discriminators. By controlling the
voiced and unvoiced speech segments independently, the perfor-
mance of each discriminator was significantly improved, which
allowed the generator to produce more natural speech waveforms.
The experimental results demonstrated the superiority of our pro-
posed method over the conventional Parallel WaveGAN and simi-
larly configured WaveNet systems. Future work includes improv-
ing the performance of the generator by utilizing the voicing in-
formation of speech.
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[18] M Bińkowski, J Donahue, S Dieleman, A Clark, E Elsen,
N Casagrande, L. C Cobo, and K Simonyan, “High fidelity
speech synthesis with adversarial networks,” Proc. ICLR,
2020.

[19] I Goodfellow, J Pouget-Abadie, M Mirza, B Xu, D Warde-
Farley, S Ozair, A Courville, and Y Bengio, “Generative
adversarial nets,” in Proc. NIPS, 2014, pp. 2672–2680.

[20] X Mao, Q Li, H Xie, R. Y Lau, Z Wang, and S Paul Smolley,
“Least squares generative adversarial networks,” in Proc.
ICCV, 2017, pp. 2794–2802.
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