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Abstract

Recent advances in synthetic speech quality have enabled us to
train text-to-speech (TTS) systems by using synthetic corpora.
However, merely increasing the amount of synthetic data is not al-
ways advantageous for improving training efficiency. Our aim in
this study is to selectively choose synthetic data that are beneficial
to the training process. In the proposed method, we first adopt a
variational autoencoder whose posterior distribution is utilized to
extract latent features representing acoustic similarity between the
recorded and synthetic corpora. By using those learned features,
we then train a ranking support vector machine (RankSVM) that
is well known for effectively ranking relative attributes among bi-
nary classes. By setting the recorded and synthetic ones as two
opposite classes, RankSVM is used to determine how the synthe-
sized speech is acoustically similar to the recorded data. Then,
synthetic TTS data, whose distribution is close to the recorded
data, are selected from large-scale synthetic corpora. By using
these data for retraining the TTS model, the synthetic quality can
be significantly improved. Objective and subjective evaluation re-
sults show the superiority of the proposed method over the con-
ventional methods.

Index Terms: Speech synthesis, data augmentation, variational
autoencoder, ranking support vector machine

1. Introduction

As the accuracy of acoustic modeling has increased following the
revolution of deep neural networks, the synthetic quality of neu-
ral text-to-speech (TTS) systems has improved significantly [1-3].
However, these systems still have a major shortcoming in that a
lot of training corpora are required to learn the complex nature of
speech production [4].

To overcome this limitation, various studies employing data
augmentation techniques have been proposed. For instance, Huy-
brechts et al. [5, 6] proposed using a well-trained voice conver-
sion model to extend the speaking style of the target speaker’s
TTS acoustic model; Wu et al. [7] proposed a speaker similarity-
based data selection method from other speakers’ recordings for
enlarging the training corpus of the TTS vocoding model. While
those methods require external datasets to augment target speak-
ers’ voices, Sharma et al. [8] proposed to generate a large-scale
synthetic corpus within the same speaker’s model to distill the
knowledge from the autoregressive (AR) WaveNet to the non-AR
Parallel WaveNet.

Similar to Sharma’s work, our previous work proposed a
TTS-by-TTS model in which a large-scale synthetic corpus gen-
erated by a well-designed TTS model is used to improve the qual-
ity of other TTS models [9]. One of the key ideas of this work
was to collect a large number of text scripts while maintaining the
recording scripts’ phoneme distribution. This enabled the model
to simulate various phoneme combinations, resulting in signifi-
cantly improving the TTS model’s stability with the unseen text.
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However, increasing the amount of the corresponding syn-
thetic waveform is not always advantageous for improving train-
ing efficiency [10], since this might cause negative effects if
poorly generated waveforms are included. To address this prob-
lem, we propose a data-selective augmentation method for TTS
systems. From a large-scale synthetic corpus, the proposed
method can selectively choose the training data whose acoustic
distribution is similar to the recordings. Specifically, we adopt
a variational autoencoder (VAE) as a reference encoder for the
TTS acoustic model [11]. VAEs are well known for capturing
latent representations of feature distribution and have been em-
ployed as style encoders of controllable and/or expressive TTS
tasks [12—15]. Similarly, our method utilizes a VAE to capture
acoustic similarities between the acoustic features extracted from
the natural recordings and synthesized by the TTS models.

We introduce a ranking support vector machine (RankSVM)
[16], which is well known for scoring relative attributes between
binary classes. Diverging from our previous work [10] that used
OpenSMILE features [17], we employ latent feature vectors ex-
tracted from the learned VAE'’s posterior distribution for recorded
and synthetic ones. By setting them as two opposite classes, the
RankSVM learns to determine originalities that represent how the
distribution of the synthetic waveform is acoustically close to that
of the natural recordings. On the basis of this originality, it is
possible to selectively discard the synthetic waveforms whose at-
tributes are dissimilar to the recordings; therefore, the modeling
accuracy of the TTS system retrained with the remaining samples
becomes significantly improved.

The objective and subjective evaluation results verified the su-
periority of the proposed method over the original system trained
with recorded data alone and the similarly configured system re-
trained with all the synthetic data without any selection method.
In particular, our method achieved 3.89 and 3.74 mean opinion
score (MOS) for Tacotron 2 and FastSpeech 2 models, respec-
tively, with 1,000 utterances of limited training data.

2. TTS-driven data augmentation
2.1. Database

The experiments used a phonetically balanced Korean corpus
recorded by a Korean female professional speaker. The speech
signals were sampled at 24 kHz with 16-bit quantization. In to-
tal, 1,000 (1.8 hours), 270 (0.5 hours), 130 (0.2 hours) utterances
were used for training, validation, and testing, respectively.

2.2. Baseline TTS model

It is crucial to design a well-structured TTS system to synthe-
size high-quality speech database. Among various state-of-the-
art models, we opted to pursue a VAE-Tacotron 2 model with a
phoneme alignment approach (Figure 1a) thanks to its stable gen-
eration and competitive synthetic quality [18, 19]. Following the
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Figure 1: Block diagrams of (a) the baseline TTS model and (b)
the RankSVM model. The symbols j and o* denote the VAE
statistics (i.e., the mean and variance of the posterior distribu-
tion, respectively) to sample the latent variable z.

previous study in Zhang et al. [13], the prior and posterior distri-
butions of the VAE are modeled by Gaussian distributions. Note
that the use of VAE is beneficial not only for giving variations to
the synthetic sample itself but also for capturing the acoustic char-
acteristics of the natural recordings and the synthetic waveforms.
Specifically, we leverage the statistics of the learned VAE’s pos-
terior distribution (i.e., mean and variance) to measure acoustic
similarities, which will be discussed in Section 3.

In the case of the vocoding models, we adopt a Parallel
WaveGAN vocoder [20-22] based on a multi-band harmonic-
plus-noise model (MB-HN-PWG [23]). Specifically, two separate
WaveNet generators are trained to jointly learn the harmonic and
noise characteristics of the speech, respectively. By employing
the target speech’s periodicity in the multiple frequency bands, it
is possible to produce speech outputs as naturally as recordings.

2.3. Large-scale data augmentation

To collect text scripts for synthesizing the large-scale speech
waveforms, we crawled news articles from the NAVER website!
[9,10] and prepared 80,000 text scripts that were 80 times larger
than the training utterances. Using these text scripts, the pre-
trained TTS model described in the previous section generatcs2
the corresponding 80,000 speech waveforms.

3. RankSVM-based data selection

Increasing the number of text scripts is beneficial for the target
TTS model to learn the distribution of various phoneme combina-
tions, enabling the model to generate more stable speech from the
unseen text input [9]. However, we must carefully increase the
number of corresponding synthetic waveforms to exclude poorly
synthesized samples before retraining the target TTS model [10].

'https://news.naver.com

2In the generation step, we condition the TTS acoustic model on
VAE by using the centroid of latent vectors computed over all the train-
ing data [24].
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Figure 2: Distribution of the VAE’s posterior mean vector ex-
tracted from recorded (red dot) and synthetic (blue triangle)
samples: (a) before and (b) after applying the VAE fine-tuning
process.
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Figure 3: Density histograms of originality determined using
RankSVM from the recorded (red boxes) and synthetic (blue
boxes) waveforms, respectively.

To achieve this, we propose a RankSVM-based data selection
method composed of three sub-steps: VAE fine-tuning, RankSVM
training, and data selection.

3.1. VAE fine-tuning

To effectively train the RankSVM, it is very important to extract
VAE statistics that adequately represent the distributions between
the recorded and synthetic waveforms. However, the pretrained
TTS model is learned through the recorded database only, and it
is difficult for the VAE model to capture the synthetic database’s
distribution.

To address this problem, we fine-tune the pretrained TTS
model by using the TTS corpus combined with both recorded and
synthetic corpora. Because both recorded and synthetic acous-
tic features are now included for training, the fine-tuned VAE
model becomes aware of their acoustic distribution®. Figure 2
describes the VAE’s statistics approximated in the t-distributed
stochastic neighbor embedding (t-SNE) space extracted from the
test set [25]. It shows that applying the fine-tuning process (Fig-
ure 2b) represents the feature distributions better, which is ex-
pected to be beneficial for training the RankSVM model.

3.2. RankSVM

RankSVM is well known for learning relative attributes from
two different classes [16]. As shown in Figure 1b, the proposed
method sets the VAE feature vectors obtained from recorded and
synthetic ones as two opposite classes, respectively. Then, a rank-
ing function is learned to determine the originality, a real-valued
score defined as how the distribution of the synthetic waveforms
is acoustically similar to that of the natural recordings.

3The fine-tuned VAE is only used as a feature extractor of the
RankSVM model. The large-scale data augmentation described in Sec-
tion 2 is performed by the pretrained model without the fine-tuning pro-
cess.



Table 1: Distortions with a 95% confidence interval measured
from two different groups: synthetic samples that have high
10% and low 10% originalities, respectively.

Range of originality = FO RMSE (Hz) LSD (dB)
High 10% 26.66+5.18 3.8740.18
Low 10% 32.2845.96 4.01+0.16

3.2.1. Ranking function

Assuming we have a training set 7' = {¢} represented in R" by
VAE features {: },and T' = NUDM, where N and M denote the
recorded and synthetic set, respectively. The goal of RankSVM is
to learn a ranking function defined as follows [26]:

r(x) = w'ay, (D

with the following constraints:
V(i,j) € O :w e > w’ xj, )
V(i,j) €S :w e =w’ xj, 3)

where w, O, and S denote the weight vector of the ranking func-
tion, ordered set, and similar paired set, respectively. Specifically,
the ordered set represents pairs of recorded and synthetic samples,
and the similar set represents either pairs of synthetic samples or
pairs of recorded samples.

Parikh et al. [16] proposed to solve the problem using New-
ton’s method [27]. However, this is not practical for large-scale
data augmentation because of its quadratic computational com-
plexity with regard to the number of training samples. Therefore,
we adapted a stochastic gradient decent to accelerate the train-
ing [28]. Once we obtain an optimal w, the originality of recorded
and synthetic samples is calculated by Equation (1). Note that the
originality scores are normalized to [0, 1] for convenience.

3.2.2. Relationship between originality and acoustic similarity

To further verify the relationship between the synthetic sample’s
originality and its acoustic similarity with the natural recordings,
we analyzed distortions in the generated acoustic features. In de-
tail, we collected two different synthetic groups from the test set.
One group consisted of synthetic samples that had high 10% orig-
inalities, whereas the other group consisted of synthetic samples
that had low 10% originalities. Then, objective metrics, such as FO
root mean square error (RMSE) and log spectral distance (LSD),
were measured from each group.

Table 1 shows the test results. It can be seen that the first
group has much smaller generation distortions, which confirms
that the synthetic waveforms with high originality have acousti-
cally close characteristics to the natural recordings.

3.3. Data selection

On the basis of the synthetic waveform’s originality, we selec-
tively discard the samples (e.g., those with low originality) that
have dissimilar characteristics with the recordings. The entire
acoustic model described in Section 2.2 is then retrained by using
the remaining samples (e.g., those with high originality) together
with the original recordings. Note that the proposed task is not ap-
plied to the vocoding model since it has been reported that using
large sizes of training data is not important for training the vocod-
ing model [29]. Consistently, our previous work also confirmed
that including the augmented database to the training process was
not that effective to improve the vocoding quality [9].
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4. Experiments
4.1. TTS model details
4.1.1. Feature extraction

The linguistic features consisted of 354-dimensional feature vec-
tors containing 330 binary features for categorical contexts and
24 additional features for numerical contexts. The correspond-
ing acoustic features were extracted using the improved time-
frequency trajectory excitation vocoder at every 5 ms frame in-
tervals [30]. Note that the feature dimension was 79 containing
40-dimensional line spectral frequencies, F0, gain, binary voicing
flag (v/uv), a 32-dimensional slowly evolving waveform, and a
4-dimensional rapidly evolving waveform.

4.1.2. Acoustic model

We adopted a VAE-Tacotron 2 model with a phoneme alignment
approach [13,18]. As shown in Figure 1a, the reference acoustic
features were first fed into the VAE reference encoder composed
of six convolutional layers followed by a gated recurrent unit layer
[31]. Its output vector was then passed through two separate fully
connected (FC) layers to generate the VAE mean and variance,
respectively. Finally, the latent variables* were sampled via the
reparameterization method [11].

Having input linguistic features, the duration model predicted
phoneme-level duration through three FC layers followed by a
unidirectional long short-term memory (LSTM) network. The
encoder transformed the same linguistic features into high-level
context vectors and these were upsampled to the frame resolution.
Note that the encoder consisted of three convolution layers, a sin-
gle bi-directional LSTM network, and a single FC layer.

The decoder was used to generate the output acoustic fea-
tures. First, the previously generated acoustic features were fed
into the PreNet [2], and those features and the context vectors
from the encoder were then passed through two unidirectional
LSTM layers, followed by two projection layers. Finally, residual
elements of the generated acoustic features were passed through
the PostNet [2] to improve generation accuracy.

Both the input linguistic and output acoustic features were
normalized to have zero mean and unit variance. Xavier initial-
izer [32] and RAdam optimizer [33] were used for initializing and
updating the weights, respectively. More setup details are given
in our previous work [9].

4.1.3. Vocoding Model

The setups for training the MB-HN-PWG model followed our
previous work in [23]. The harmonic WaveNet consisted of 20
dilated residual blocks with two exponentially increasing dila-
tion cycles. On the other hand, the noise WaveNet consisted of
10 residual blocks with one exponentially increasing dilation cy-
cle. In each WaveNet, 16 band-pass filters parameterized by win-
dowed sinc functions with 255 filter taps were applied to divide
the frequency bands. The model was trained for 400K steps with
RAdam optimizer [33]. The discriminator weights were fixed for
the first 100K steps, and both the generator and the discriminator
were jointly trained for the rest 300K steps [23].

4.2. Objective and subjective evaluations

To evaluate the performance of the proposed system, we measured
the distortions between the acoustic features obtained from the
original recording and generated by the TTS models. The metrics

4They were simply added to the final layers of the duration model
and the Tacotron 2 encoder, respectively. Note that two separated FC
layers were used for projecting latent variables to each model.
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Figure 4: Objective evaluation results with respect to various
amounts of augmented data used in the retraining process: the
dashed red line represents the results of the baseline model
learned with recorded data alone.
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Figure 5: The MOS test results with respect to various amounts
of recorded data: baseline model trained with recorded data
alone (red square) and augmented models trained without (pur-
ple triangle) and with (blue dot) the proposed data selection
method.

for measuring distortion were FO RMSE, LSD, gain RMSE, and
v/uv error rate.

Figure 4 shows the objective evaluation results with respect
to various amounts of augmented data sets used in the retraining
process (10K, 20K, ..., 80K utterances). The findings can be ana-
lyzed as follows: (1) The distortions decreased when the number
of augmentation databases increased to some amount (about 40K
utterances) because the modeling accuracy was also improved, de-
pending on the amount of training databases. (2) However, distor-
tions increased when the model was trained with more than 50K
augmented utterances since the amount of poorly generated data
increased as well. This implies the importance of data-selective
augmentation in the TTS task, which will be further analyzed in
the following subjective evaluations.

To evaluate the perceptual quality of the proposed system, we
performed five-scale naturalness MOS listening tests’. In the test,
twenty native Korean listeners were asked to make quality judg-
ments about 20 randomly selected samples from the test set.

For comparison, we included the FastSpeech (FS) 2-based
TTS system [34]. The structure was similar to the Tacotron 2-
based baseline TTS system, but only the acoustic model was re-
placed with the non-AR Transformer networks [35]. The detailed
setup for conducting the FS 2 model followed those in our previ-
ous work [9].

SGenerated audio samples are available at the following URL:
https://sewplay.github.io/demos/txt2/
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Table 2: The MOS test results with a 95% confidence interval:
the system trained with the proposed method is shown in bold-
face. Note that the number of recorded utterances was 1K, and
that of augmented utterances was represented as M.

System Model Dat? MOS
type selection
Test 1 Tacotron 2 - - 3.35+0.11
Test 2 Tacotron 2 80K No 3.6640.11
Test 3 Tacotron 2 40K Yes 3.89+0.09
Test 4 FastSpeech 2 - - 3.3040.12
Test 5 FastSpeech2 80K No 3.61+0.09
Test 6 FastSpeech 2 40K Yes 3.7410.08
Recording - - - 4.2940.08

Table 2 shows the MOS evaluation results for the TTS sys-
tems with respect to the different training conditions, and the
analysis can be summarized as follows: (1) In both the AR
and non-AR models, the systems retrained with the synthetic
corpus performed better than those trained with recorded data
alone. It means that increasing the training data with the aug-
mented wavefroms was effective for enhancing the synthetic qual-
ity. (2) Among the systems with augmentations, the proposed
systems with the data-selective augmentation method (Tests 3
and 6) performed better than the systems without any selection
method (Tests 2 and 5, respectively). As poorly generated syn-
thetic samples were discarded based on originality, the proposed
TTS systems synthesized more natural speech. (3) Consequently,
our system achieved 3.89 and 3.74 MOS for the Tacotron 2 and
FS 2 models, respectively, when the recorded data for training the
model were limited to 1,000 utterances.

4.3. Additional experiments with enough recordings

To further confirm the effectiveness of the proposed method un-
der the condition of the enough recordings, we conducted addi-
tional MOS tests by changing the number of recorded datasets
from 1K to 10K utterances. In each case, we trained the base-
line VAE-Tacotron 2 model, augmented 80K utterances, selected
40K utterances by using the fine-turned VAE with the RankSVM
model, and retrained the target TTS model. As shown Figure 5,
the perceptual quality was improved as the amount of recorded
data increased. Although the gap between the proposed and con-
ventional methods was reduced as the synthetic quality was also
improved, the data-selective augmentation method was still effec-
tive, even when the size of the source database increased enough.

5. Conclusion

We proposed a TTS-driven data-selective augmentation tech-
nique. From the large-scale synthetic corpora, a RankSVM with
VAE’s posterior distribution determined the originality that repre-
sents how the acoustic characteristics of the generated speech was
similar to those of the natural recordings. By selectively includ-
ing the synthetic data with the recorded one, the performance of
the retrained TTS system has been improved significantly. Future
works include to extend the proposed method to augment other
speaking styles for the emotional and/or expressive TTS models.
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