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Abstract
This paper proposes an effective emotional text-to-speech (TTS)
system with a pre-trained language model (LM)-based emotion pre-
diction method. Unlike conventional systems that require auxil-
iary inputs such as manually defined emotion classes, our system
directly estimates emotion-related attributes from the input text.
Specifically, we utilize generative pre-trained transformer (GPT)-
3 to jointly predict both an emotion class and its strength in rep-
resenting emotions’ coarse and fine properties, respectively. Then,
these attributes are combined in the emotional embedding space and
used as conditional features of the TTS model for generating out-
put speech signals. Consequently, the proposed system can produce
emotional speech only from text without any auxiliary inputs. Fur-
thermore, because the GPT-3 enables to capture emotional context
among the consecutive sentences, the proposed method can effec-
tively handle the paragraph-level generation of emotional speech.
Index Terms: Text-to-speech (TTS), emotional TTS, emotion
modeling from text, language model, GPT-3

1. Introduction
As the quality of the neural text-to-speech (TTS) system has
reached natural sound almost indistinguishable from human record-
ings [1–3], the interest in emotional TTS has also increased [4–8].
One of the general approaches is using reference audio [7–10],
where the emotional style representation, i.e., emotion embedding,
is extracted from the emotional reference audio and then used as an
auxiliary input of the TTS system.

Directly utilizing natural speech’s emotion information as the
conditional input can effectively deliver the expressiveness to syn-
thetic outputs. However, the overall cost of deciding the proper
emotional attributes in each sentence can be high since these meth-
ods require a continuous selection process of auxiliary inputs during
an inference. For instance, when synthesizing a bulk of sentences,
such as audiobook contents [11], the entire TTS process becomes
expensive since a large number of emotions need to be annotated
properly before synthesizing the corresponding waveforms.

To address the aforementioned problem, we propose an lan-
guage model (LM)-based automatic emotion prediction method.
From the text inputs, a joint emotion predictor estimates the emo-
tion class and its strength to model the coarse and fine properties
of the target emotion, respectively. Specifically, we adopt a genera-
tive pre-trained transformer (GPT)-3 [12] as the backbone network
of the emotion predictor that enables to predict the emotional at-
tributes without any auxiliary information. Then, a joint emotion
encoder converts the emotion class and strength into the embed-
ding space by linearly scaling the embedding vector of the emotion
class according to its strength. Finally, the resulting embedding is
fed to the TTS model to synthesize emotional output speech. Our
contributions are summarized as follows:

• To achieve the emotional TTS system without relying on auxil-
iary inputs, we propose an LM-based emotion prediction method
that estimates both the emotion class and strength of the target
speech from input text. The experimental results showed that the
proposed method estimated more accurate emotional attributes
than the conventional method.

• We tested the proposed emotion prediction method in a neu-
ral TTS system based on a Tacotron 2 acoustic model [13–15]

with a Parallel WaveGAN (PWG) vocoder [16–19]. The exper-
imental results verified that the proposed TTS system synthe-
sized more natural and expressive speech than the conventional
method, and was competitive with the system that used man-
ually defined emotional attributes. In particular, our TTS sys-
tem achieved results of 3.92 and 3.94 in the mean opinion score
(MOS) tests, which evaluated the naturalness and emotional ex-
pressiveness of synthetic speech.

• Under the paragraph-level speech synthesis scenario, we showed
that the proposed system was capable of replacing the emotional
TTS system with human-annotated emotional attributes. A sub-
jective preference test verified that these TTS systems were per-
ceptually indistinguishable.

2. Related Works
In the emotional TTS tasks, several studies have proposed to pre-
dict emotional attributes from the text input. For instance, Cui et
al. [20] proposed to predict an emotion class from the text by using
a convolutional neural network (CNN) block. Lei et al. [21] pro-
posed to predict emotion strength from the text by using the text en-
coder module of Tacotron [22]. Although these methods provided
highly emotional speech, their applications were limited because
they required manual definitions of the desired emotion class [20]
or strength [21] during the inference phase, which makes the cost
of generating emotional speech much higher.

Unlike those studies, our method differs in that it predicts
both the emotion class and the emotion strength by using pre-
trained LM. Note that Lei et al. [23] adopted a pre-trained BERT
model [24] to predict emotional attributes from text, which is
mostly similar to our work. However, the difference in our work
is that we adopt GPT-3 instead of BERT, and further propose a joint
emotion encoder that maximizes the merits in the usage of emotion
strength.

3. Proposed Emotional TTS System
The proposed emotional TTS system is illustrated in Figure 1. First,
the joint emotion predictor estimates the emotion class and strength
from the input text. Then, the joint emotion encoder mixes them
to reflect the joint representation of emotions’ coarse and fine char-
acteristics. Finally, this joint emotion embedding is fed to the TTS
model to synthesize output emotional speech. The details of this
process are described in the following sections.

3.1. Emotion class and strength annotation
Before training the joint emotion predictor, it is necessary to
prepare the annotations of emotion class and strength from the
recorded data. In the case of the emotion class annotation, we guide
the speaker to act on the specific emotion during the recording pro-
cess by assuming the speaker’s acting is enough to appropriately
represent the target emotion.

However, annotating the emotion strength is a relatively diffi-
cult task, since its subjective and relative properties make it hard
to quantify. To overcome this problem, we adopt an approach sim-
ilar to Lei et al. [25] based on a ranking support vector machine
(RankSVM) [26], which is a well-known method for measuring
relative attributes between binary classes. Specifically, the emotion
features consisting of Mel-frequency cepstral coefficients (MFCC),

Interspeech 2022
18-22 September 2022, Incheon, Korea

Copyright © 2022 ISCA 4596 10.21437/Interspeech.2022-11133



Joint Emotion Predictor

Text
Analysis

GPT-3
FC layer

FC layer

Joint 
Emotion
EncoderEmotion

Strength

Emotion
Class

Tacotron2
Encoder

Duration
PredictorC

Upsampling

Linguistic
Features

Phoneme
Duration

C

Joint
Emotion
Embedding

Acoustic model

Input
Text

Acoustic
Feature

Tacotron2
Decoder

HN-PWG
Vocoder

Output
Speech

Figure 1: Block diagram of the proposed system;© denotes the
concatenation process between input tensors.

fundamental frequency (F0), and so on are first extracted from the
neutral and emotional speech. Then, a ranking function between
these features is trained with the RankSVM objective [26, 27]. Af-
ter computing a rank for the emotion of each speech signal, it is
normalized to have a value between 0 (weakest) and 1 (strongest);
we then define it as annotated emotion strength. Note that, based
on the assumption that a neutral emotion has no strength, we fixed
the strength of neutral emotion at zero. Consequently, it is possi-
ble to quantify the relative strength that represents the intensity of
emotion compared to the neutral data.

3.2. Emotion class and strength prediction from text

To construct an efficient emotional TTS system, we propose a joint
emotion predictor that estimates both the emotion class and its
strength from input text. To accurately predict these attributes, we
utilize GPT-3 as a feature extractor network of the emotion predic-
tor [12, 28]. In particular, the proposed emotion predictor consists
of the GPT-3 followed by two individual fully connected (FC) lay-
ers, where one FC layer is used to estimate the one hot encoded
emotion class and the other is used to estimate the scalar-valued
emotion strength.

The advantages of the proposed emotion predictor are clear.
First, due to the GPT-3 enables the model to accurately predict
emotional attributes, it is capable of getting rid of the handwork
for emotion annotation of the speech signal which makes the emo-
tional TTS expensive. Additionally, thanks to the GPT-3’s ability to
identify the contextual information of input sentences, it effectively
considers the emotional context among multiple sentences.

3.3. Joint embedding of emotion class and strength

Once the emotion’s class and strength are generated, the joint emo-
tion encoder blends them to compose their joint emotion embed-
ding vector. First, the one-hot encoded emotion class is converted
to a corresponding emotion class embedding through a look-up ta-
ble (LUT). Then, the joint emotion embedding, he, is obtained by
mixing emotion class embedding, eemb, and the emotion strength,
estr, as follows:

he = softplus (Wembeemb · (1 + wstrestr)) , (1)

where Wemb and wstr denote the projection matrix and scalar vari-
able, respectively; softplus(·) denotes the softplus activation func-
tion [29]. Finally, the joint emotion embedding is fed to the TTS
model for the synthesis of emotional speech.

By utilizing both emotion class and strength, the proposed
method can effectively reflect both the coarse and fine structures of
emotion properties. To show this, we drew the t-distributed stochas-
tic neighbor embedding (t-SNE) [30] plot of joint emotion embed-
ding, he, which is illustrated in Figure 2. The result shows that
each joint emotion embedding converges to the single vector point,
which corresponds to the embedding of neutral emotion as the emo-
tion strength weakens; whereas it diverges in a particular direction
as the emotion strength increases. This indicates that each emotion
class composes its own cluster in the emotional embedding space,
which corresponds to the emotion’s coarse property; whereas emo-

Figure 2: t-SNE plot of joint emotion embeddings generated
from randomly sampled emotion strengths with various
emotions. The brighter color indicates that the emotion

strength becomes stronger, and vice versa.

tion strength can adjust the emotion embedding to finely represent
the emotional properties.

3.4. TTS model
As an acoustic model of our TTS system, we adopt a duration-
informed Tacotron 2 [13–15], which has the capacity to accurately
align the phoneme sequence with the acoustic features. In this
method, the linguistic features extracted from input text are fed to
the Tacotron 2 encoder to extract high-level linguistic embeddings.
Then, the external duration predictor estimates emotion-dependent
phoneme duration by receiving the concatenated vectors of linguis-
tic features and joint emotion embeddings in Eq. (1) as inputs. For
given phoneme durations, the high-level linguistic embedding is up-
sampled through a repetition process to match its temporal resolu-
tion to that of the acoustic features. Finally, the Tacotron 2 de-
coder [1] autoregressively generates the output acoustic features by
receiving concatenated vectors of up-sampled linguistic embedding
and joint emotion embedding.

After generating acoustic features, the multi-band harmonic-
plus-noise PWG (MB-HN-PWG) vocoder [19] synthesizes the out-
put speech. In this vocoder, two separated harmonic and noise
WaveNets jointly capture the harmonic and noise components of
speech within the PWG framework to generate high-quality speech
waveforms. As a result, it can stably generate qualified speech sig-
nals with desired emotion.

3.5. Training criteria
Our models consist of two separated parts: the joint emotion pre-
dictor and the acoustic model. The loss function of each part is
described as follows:

La = L2(ŷ, y) +L2(d̂,d) (2)
Le = L2(êstr, estr) + λcls ·CE(êcls, ecls), (3)

where La
1 and Le

2 denote the loss functions of the acoustic model
and emotion predictor, respectively; y, d, ŷ, and d̂ denote acoustic
features, phoneme duration, and their generated counterparts, re-
spectively; L2(·, ·) and CE(·, ·) denote L-2 loss and cross entropy
loss, respectively; λcls denotes the hyperparameter balancing the
two loss terms, which was chosen to be 0.01 based on our prelimi-
nary experiments.

4. Experiments
4.1. Database and features
For the experiments, a phonetically balanced emotional TTS cor-
pus recorded by a female Korean professional speaker was used.
The speech corpus consisted of four different emotions: neutral,

1During a training stage, the target emotion class and strength are
used in the TTS model instead of predicted values to avoid the effect of
the prediction error of emotion predictor.

2For the computational efficiency, we froze the parameters of the
GPT-3 during the TTS’s model training.
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happiness, sadness, and anger. Specifically, 2,000, 100, and 30 ut-
terances were used as each emotion’s training, validation, and test
sets, respectively. In total, 8,000 utterances (8.72 h), 400 utterances
(0.43 h), and 120 utterances (0.16 h) were used for the training, vali-
dation, and test sets, respectively. The speech signals were sampled
at 24-kHz with 16-bit quantization.

As the input of the TTS acoustic model, we used 354-
dimensional linguistic feature vectors. Specifically, 330-
dimensional vectors including phoneme, accent, break, and punc-
tuation were used as categorical linguistic features; whereas
24-dimensional vectors including positional information of each
phoneme were used as numerical features.

As the output vectors of the TTS acoustic model, we used
79-dimensional feature vectors extracted by an improved time-
frequency trajectory excitation vocoder [31], which consisted of
40-dimensional line spectral frequencies, F0, energy, binary voic-
ing flag, a 32-dimensional slowly evolving waveform, and a 4-
dimensional rapidly evolving waveform. The frame length and the
shifting size were set to 20 ms and 5 ms, respectively.

As emotion features for training rankSVM, the 384-dim fea-
ture vectors were extracted from the speech signal by using the
openSMILE tooklit [32], which consisted of a 12-dimensional
MFCC, harmonic-to-noise ratio, root mean square frame energy,
zero-crossing rate, and F0 with their statistical parameters [33].

4.2. Model configuration
4.2.1. Emotion predictor and encoder

As a baseline emotion predictor, we adopted a system proposed
in Cui et al. [20], which predicted emotion class by using a 2-
dimensional CNN model. In particular, the baseline emotion pre-
dictor consisted of three convolution blocks composed of two 2-
dimensional convolution layers with a 3×3 kernel size followed by
a 2-dimensional max pooling operation layer. In each convolution
block, the input/output dimensions were set to 1/64, 64/128, and
128/256, respectively. Finally, two FC layers with output dimen-
sions of 128 and four were used as the last layers for predicting the
emotion class. After predicting the emotion class, emotion embed-
ding was composed by passing it to the LUT layer.

For the configuration of the proposed joint emotion predictor,
we adopted the HyperClova [28], which is a Korean variant of GPT-
3 trained on a Korean-centric text corpus, as a feature extraction
network for predicting emotional attributes. In detail, the model
consisted of 12 transformer decoder layers [34] with 768 hidden
units and 16 attention heads and was trained by using a large-scale
text corpus consisting of 560 billion tokens. The resulting network
parameter was in a total of 137 million3. For the two FC layers, one
hidden layer with 256 hidden units followed by ReLU activation
was used. Each FC layer had softmax and linear output layers with
the dimensions of 4 and 1, respectively.

To configure the joint emotion encoder, we used the LUT to
convert the predicted emotion class to one of four feature vectors
with a 32-dimensional size. The input and output dimensions of
projection matrix were set to 32.

4.2.2. TTS model

For the acoustic model, the duration predictor consisted of three
FC layers and a uni-directional long short-term memory (LSTM)
layer with 256 units. Each FC layer had 1024, 1024, and 512
units, respectively. The Tacotron 2 encoder consisted of three con-
volution layers with 10×1 kernels and 512 channels, bidirectional
LSTM with 512 memory blocks, and FC layers with 512 units. The
Tacotron 2 decoder was composed of PreNet, PostNet, and the main
LSTM block. The PreNet consisted of two FC layers with 256
units. The main LSTM block consisted of the two unidirectional
LSTM layers with 1,024 memory blocks, followed by two FC lay-
ers with 79 units. Finally, the PostNet consisted of five convolution

3This model corresponded to the smallest type in the original Hy-
perClova paper. Noted that the model size was relatively smaller com-
pared to the largest HyperClova with 82 billion parameters [28]. In our
preliminary experiments, however, we confirmed that 137 million pa-
rameters were enough to effectively train the emotion predictor while
maintaining a low computational cost.

(a) (b)

Figure 3: Classification accuracy of emotion predictors: (a)
conventional CNN-based and (b) proposed LM-based methods

layers with 5×1 kernels and 512 channels, followed by a residual
connection to its input.

For the configuration of the MB-HN-PWG vocoder, the har-
monic WaveNet consisted of 20 dilated residual blocks with two ex-
ponentially increasing dilation cycles, whereas the noise WaveNet
consisted of 10 residual blocks with one exponentially increasing
dilation cycle. The number of residual and skip channels was set to
64, and the convolution filter size was five. More setup details for
the neural vocoder can be found in our previous work [19].

4.3. Evaluations
4.3.1. Effectiveness of LM for emotion prediction

To verify the advantages of the LM-based emotion prediction, we
compared the classification error of the emotion class predicted by
conventional CNN-based and LM-based emotion predictors. As
shown in Figure 3, our proposed emotion predictor achieved signif-
icantly higher classification accuracy than the conventional CNN-
based method. For instance, the proposed LM-based emotion pre-
dictor scored 76.7% on classification accuracy when predicting
happiness emotion, which is 36.7% higher than that of the con-
ventional one. Overall, the classification accuracy of the proposed
emotion predictor averaged by all emotions was 66.7%, which was
20.0% higher than the conventional one’s 46.7% prediction accu-
racy.

4.3.2. Subjective listening tests

For the subjective evaluation, all TTS systems had the same struc-
tures as the acoustic model and the neural vocoder, as described
in Section 4.2.2, except for the method of deciding emotional at-
tributes. First, we evaluated the system without (S1) or with (S2)
the proposed joint emotion encoder by using manually annotated
emotional attributes as described in Section 3.1. We then evalu-
ated the accuracy of predicting emotional attributes by using con-
ventional CNN-based (S3) and proposed LM-based (S4) emotion
predictors. By following the method of Cui et al. [20] described
in Section 4.2.1, the CNN-based emotion predictor estimated emo-
tion class only. Noted that when the emotion encoder was not used,
a simple LUT layer was applied to the emotion class to compute
emotion embedding.

We conducted two MOS listening tests to evaluate the (1) natu-
ralness and (2) emotional expressiveness of synthetic speech4. Dur-
ing the tests, a total of 18 native Korean listeners were asked to rate
the score of speech samples using the following 5-point responses:
1 = Bad, 2 = Poor, 3 = Fair, 4 = Good, and 5 = Excellent. We
randomly selected 15 sentences per emotion from the test set and
then synthesized speech signals using the different models; thus, a
total of 1,080 scores were collected to evaluate each system.

For the naturalness MOS test, the listeners were asked to rate
how close the perceptual quality of the synthetic speech was to that
of the recordings. The trends of the test results in Table 1 can be
analyzed as follows: (1) Utilizing the emotion strength by using

4Generated audio samples are available at the following URL:
https://christophyoon.github.io/lmemotiontts/
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Table 1: The naturalness MOS test results with a 95% confidence interval. Note that in the test, the listeners were asked to evaluate
the quality of each audio sample.

System
Index

Type of
Emotion predictor

Use of joint
Emotion encoder

Emotion
Class

Emotion
Strength Neutral Happiness Sadness Anger Average

S1 – – Manual – 4.12±0.22 4.20±0.24 3.85±0.30 3.46±0.23 3.90±0.17
S2 – Yes Manual Manual 4.17±0.19 4.23±0.21 3.83±0.28 3.59±0.21 3.96±0.15
S3 CNN [20] – Predicted – 3.96±0.15 3.75±0.24 3.91±0.23 3.56±0.15 3.79±0.09

S4 (Proposed) LM [28] Yes Predicted Predicted 4.12±0.22 4.19±0.24 3.84±0.32 3.52±0.23 3.92±0.15
Recordings – – – – 4.64±0.17 4.29±0.30 4.63±0.20 4.69±0.20 4.56±0.09

Table 2: Emotional expressiveness MOS test results with a 95% confidence interval. Note that in the test, the listeners were asked to
evaluate how the emotions of synthetic speech matched the content of the text.

System
Index

Type of
Emotion predictor

Use of joint
Emotion encoder

Emotion
Class

Emotion
Strength Neutral Happiness Sadness Anger Average

S1 – – Manual – 4.00±0.24 4.07±0.23 3.87±0.32 3.61±0.33 3.89±0.10
S2 – Yes Manual Manual 4.09±0.23 4.14±0.23 3.86±0.25 3.77±0.29 3.96±0.09
S3 CNN [20] – Predicted – 3.64±0.15 2.52±0.21 3.34±0.16 3.53±0.24 3.26±0.25

S4 (Proposed) LM [28] Yes Predicted Predicted 4.22±0.25 4.01±0.28 3.84±0.34 3.67±0.30 3.94±0.12
Recordings – – – – 4.83±0.13 4.46±0.32 4.69±0.21 4.65±0.20 4.66±0.08

Table 3: Subjective preference test results (%) between two
different types of generation cases. The systems that achieved

significantly better preference at the p < 0.01 level are in
boldface.

Index S2 S4single S4multi Neutral p-value
Test 1 40.6 – 40.0 19.4 0.47
Test 2 – 24.4 55.0 20.6 < 10−3

the proposed joint emotion encoder in addition to the emotion class
improved the perceptual quality of the emotional TTS system (S1
vs. S2). (2) When the emotional attributes were predicted from
text, the TTS system with the proposed LM-based emotion pre-
dictor provided a significantly higher quality of synthetic speech
than the system with conventional CNN-based one (S3 vs. S4). (3)
When the emotional attributes were predicted from the text, there
was a quality degradation due to the prediction error of the emotion
predictor (S1 vs. S3 and S2 vs. S4). (4) However, the TTS system
with the proposed LM-based emotion predictor showed a competi-
tive quality of synthetic speech to the system with manually decided
emotional attributes by achieving only a 0.04 lower MOS result on
average (S2 vs. S4).

For the emotion expressiveness MOS test, listeners were asked
to score how the emotion of synthetic speech matched the con-
text of the input text. The trends of the test results in Table 2 can
be analyzed as follows: (1) The usage of both emotion class and
strength improved the emotional expressiveness compared to the
system using only emotion class (S1 vs. S2). This also verified
the advantages of the proposed emotion encoder for better emotion
expressiveness. (2) When the emotional attributes were predicted
through the emotion predictor, there was a quality degradation in
terms of emotion expressiveness (S1 vs. S3 and S2 vs. S4). This
was mainly caused by misclassification in emotion class, which of-
ten generated utterances that did not match the emotional context.
(3) Nonetheless, the proposed method still outperformed the con-
ventional method significantly (S3 vs. S4). In particular, there was
a large gap in the expressiveness score of happiness, where the clas-
sification error gap between conventional and proposed methods
was the largest as explained in Section 4.3.1. This indicated that
a more accurate prediction reduced the peculiarity that occurred in
the emotion misclassification. (4) Finally, the gap between the LM-
based emotion predictor and the manually decided system was only
0.02 on average (S2 vs. S4), indicating that the predicted emotional
attributes were reliable.

4.3.3. Paragraph-level emotional speech synthesis

The merits of the proposed emotion prediction method could also
be found in paragraph-level speech synthesis because the LM had
the capacity to capture the emotional context among the multiple
sentences. To verify this, we conducted two A-B preference tests

by using various audiobook scripts. In these tests, 18 native Korean
listeners were asked to select a more preferable one between two
generated speech samples. We randomly selected 10 paragraphs
consisting of 6–7 sentences, and then synthesized corresponding
speech corpora using three different synthesis methods as follows:

• S2: The emotional TTS system that manually annotated the emo-
tional attributes. In particular, the class and strength were de-
cided by considering the context of the input.

• S4single: The emotional TTS system with the proposed emotion
predictor that received only a single utterance as an input at a
time. Note that this model did not consider emotional context
among consecutive sentences.

• S4multi: The emotional TTS system with the proposed emotion
predictor that received multiple utterances at once. In this model,
the context of consecutive sentences was considered for predict-
ing emotional attributes.

Table 3 shows the results of the preference tests, whose trend
can be summarized as follows: (1) The TTS system with proposed
emotion modeling methods provided statistically indistinguishable
synthetic speech compared to the TTS system using manually an-
notated emotional attributes (Test 1; S2 vs. S4multi). This indicated
that the proposed emotion prediction method had the capability of
replacing the human-annotating process. (2) The listeners preferred
using the multiple sentences to using only a single sentence for the
input of the emotion predictor (Test 2; S4single vs. S4multi). This
verified that the usage of LM was effective in generating paragraph-
level content requiring consideration of the input sentences’ con-
text.

5. Conclusion
We proposed LM-based effective emotion prediction methods for
an emotional TTS system. As our method employed the LM to pre-
dict the emotion class and strength from the text input, the proposed
system could generate the corresponding emotional voice without
relying on auxiliary inputs. The experimental results verified that
the proposed method provided a superior quality over the conven-
tional methods and a comparable quality to a system requiring hu-
man labeling. Future works include utilizing more complex emo-
tional representation method such as global style token [35] or vari-
ational auto-encoder [36] that can further improve the expressive-
ness of the synthetic speech.
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