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Abstract
Data augmentation via voice conversion (VC) has been success-
fully applied to low-resource expressive text-to-speech (TTS) when
only neutral data for the target speaker are available. Although the
quality of VC is crucial for this approach, it is challenging to learn
a stable VC model because the amount of data is limited in low-
resource scenarios, and highly expressive speech has large acoustic
variety. To address this issue, we propose a novel data augmentation
method that combines pitch-shifting and VC techniques. Because
pitch-shift data augmentation enables the coverage of a variety of
pitch dynamics, it greatly stabilizes training for both VC and TTS
models, even when only 1,000 utterances of the target speaker’s
neutral data are available. Subjective test results showed that a Fast-
Speech 2-based emotional TTS system with the proposed method
improved naturalness and emotional similarity compared with con-
ventional methods.
Index Terms: text-to-speech, data augmentation, voice conversion,
low-resource, emotional speech, pitch-shift

1. Introduction
Deep learning approaches have been successfully applied to ex-
pressive text-to-speech (TTS). Expressive styles of speech can be
modeled using explicit labels for style attributes [1], [2] or by ex-
tracting high-level latent features from input speech [3]–[6]. How-
ever, achieving competitive performance in low-resource scenarios
remains a challenge.

In previous studies on low-resource TTS, researchers used
transfer learning [7]–[9] or multi-speaker modeling [10]–[12].
Most recently, data augmentation techniques have been success-
fully applied in low-resource scenarios [13]–[15]. In particular, a
cross-speaker style transfer method via voice conversion (VC) en-
ables expressive TTS systems to be built where expressive data is
only available for some existing speakers (i.e., source speaker) [16].
In this method, a pair of neutral speech databases of source and tar-
get speakers is used to learn a VC model. Then, the learned VC
model is used to transfer the source model’s expressive style (e.g.,
conversation) to the target speaker. Finally, a TTS acoustic model is
trained using the VC-augmented speech together with the recorded
neutral speech.

However, although a high-quality VC model is crucial for data
augmentation approaches, it is challenging to learn a stable VC
model when (1) the amount of data is limited under low-resource
conditions or (2) highly expressive speech has large acoustic vari-
ety. Under such conditions, a lack of accurate prosody conversion is
often observed because VC models tend to focus on spectral (e.g.,
Mel-spectrogram) conversion [17]. Although some VC models use
a mean-variance normalization method for fundamental frequency
(Fo) conversion [18], this is not sufficient to stably generate the
highly emotional voice of the target speaker.

To address the aforementioned problem, we propose a novel
data augmentation method that combines pitch-shift (PS) augmen-
tation and non-parallel VC-based augmentation. Our method dif-
fers from existing methods [16] in that the proposed system fo-
cuses on improving VC performance to make it suitable for con-

verting emotional attributes, even though the target speaker’s data
only consist of neutral recordings.

In detail, in the proposed method, we first apply PS-based aug-
mentation to both the source and target speaker’s neutral recordings.
As this enables the VC model to cover a variety of pitch dynam-
ics, it substantially improves the stability of the training process.
Additionally, we also propose incorporating a short-time Fourier
transform (STFT)-based Fo regularization loss into the optimiza-
tion criteria of the VC training process. This also stabilizes the tar-
get speaker’s Fo trajectory, which is crucial for converting highly
emotional speech segments. As a result, the VC model learned by
the proposed method stably transfers the source speaker’s speaking
style to the target speaker, and even makes it possible to build the
target speaker’s emotional TTS system.

We investigated the effectiveness of the proposed data augmen-
tation approach by performing subjective evaluation tasks. Note
that PS-based augmentation and STFT Fo regularization loss can be
extended to any neural VC model; however, our focus is the Scy-
clone model [19] based on a cycle-consistent adversarial network
(CycleGAN) [20]. The experimental results demonstrated that our
VC-augmented TTS system achieved better naturalness and emo-
tional similarity than conventional methods when only 1,000 utter-
ances of the target speaker’s neutral data were available.

2. Method
Figure 1 shows an overview of our proposed method. In this study,
we investigate three speaking styles: neutral, happiness, and sad-
ness. The proposed method consists of PS-based data augmenta-
tion, VC-based data augmentation and emotional TTS system. In
the following, we describe the details of each component.

2.1. PS-based data augmentation

Figure 2 shows an overview of our PS-based data augmentation.
Unlike traditional PS methods such as pitch-synchronous overlap-
add [21] and vocoders [22], our method does not require Fo esti-
mation. Furthermore, since it does not involve waveform synthesis,
there is no need to reconstruct the phase information. Specifically,
the proposed method applies a stretching technique to the spectral
fine structure to convert the pitch of the input signal. In the sepa-
ration step as shown in Figure 2a, we first compute a speech spec-
trogram using STFT and then separate it into spectral envelopes
and fine structures based on the lag-window method [23]. Next, by
applying a linear interpolation method, we stretch the spectral fine
structure along the frequency axis. Let St,k denote the spectral fine
structure for the t-th time index and k-th frequency bin. Then, we
obtain the stretched spectrum as follows [24]:

Ŝt,αk = St,k, (1)

α = 2p/12, (2)

where α denotes the stretching ratio determined by the semitone
unit p. In the generation step as shown in Figure 2b, we obtain
the pitch-shifted spectrogram by multiplying the original spectral
envelope and corresponding stretched spectral fine structure.
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Figure 1: Overview of the proposed method for building emo-
tional TTS. We used data augmentation for training both the VC
and TTS model: (a) PS-based data augmentation, (b) VC-based
data augmentation, and (c) TTS model.

As shown in Figure 1a, we apply the proposed PS method to
augment both the source and target speaker’s neutral data. In detail,
we vary the semitone unit p in the range [-3, 12], which results
in generating data 15 times larger amount of data than the original
recordings. All the augmented datasets are used to train the VC
model, which we explain further in the following section.

2.2. Non-parallel voice conversion

2.2.1. Model

From the many state-of-the-art VC models, we adopt a non-parallel
Scyclone model [19] because of its stable generation and competi-
tive quality. This method uses two separate modules: a CycleGAN-
based spectrogram conversion model [20] and a single-Gaussian
WaveRNN-based vocoder [25]. However, we only use the spec-
trogram conversion model because VC aims to augment acoustic
features when training TTS models. Note that we use the log-Mel
spectrogram as the target acoustic features together with continuous
log Fo [26], and voiced/unvoiced flags (V/UV). Predicting these
additional features using the VC model is essential to create emo-
tional TTS models that include Fo-dependent high-fidelity neural
vocoders [27].
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Figure 2: Pitch-shift data augmentation: (a) spectrogram sepa-
ration and (b) spectrogram generation.

Figure 3: Comparison of the generated Fo with and without the
proposed regularization and source Fo.

2.2.2. STFT Fo regularization loss function

To avoid unnatural conversion of the prosody features, we propose
an STFT-based Fo regularization loss function. Following a previ-
ous study on a spectrogram domain Fo loss function [28], we also
define the regularization loss function on the spectrogram domain.

Let Xn,k and X̂n,k be STFT magnitudes for extracted and pre-
dicted Fo sequences for the n-th frame index and k-th frequency
bin, respectively. The regularization loss is defined as follows:

LFo =
1

M

N∑

n=1

K∑

k=β

∣∣logXn,k − log X̂n,k

∣∣ , (3)

where N,K, and M represent the number of frames, number of
frequency bins, and number of elements in the magnitude, respec-
tively; β denotes a hyperparameter that controls the regularization
strength. To regularize only the fine structure component of Fo (i.e.,
high-frequency components of the STFT magnitude) that contains
little information about speaking styles for reading speech, we set
β = 3 based on our preliminary experiments. Furthermore, we ex-
tend the loss function to multiple resolutions inspired by previous
studies on multi-level Fo modeling [29] and multi-resolution STFT
loss [30]. Consequently, we optimize the VC model using the pro-
posed regularization loss along with the adversarial loss, cycle con-
sistency loss, and identity mapping loss functions, as described in
Scyclone [19].

As shown in Figure 3, the Fo trajectory produced without the
regularization method oscillates unstably. By contrast, with the reg-
ularization, the stability of the Fo trajectory improves as the VC
model can focus on converting essential aspects of prosody varia-
tions.

2.2.3. VC-based data augmentation

For the criteria described above, we train the Scyclone model using
a pair of source and target speaker’s speech databases. Note that the
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Table 1: Systems for comparison and the number of utterances for training the VC and TTS models.

Model Type
VC training TTS training

Neutral Neutral Happiness Sadness
REC PS-DA Source Target VC-DA Source VC-DA Source VC-DA

Source Recorded audio - - - - - - - - -
SRC-TTS Source speaker TTS - - 5.0 K - - 2.5 K - 2.5 K -
TGT-NEU-TTS Target speaker TTS - - - 2.5 K - - - - -
MS-TTS Multi-speaker TTS - - 5.0 K 2.5 K - 2.5 K - 2.5 K -
VC-TTS VC-TTS w/o PS 2.5 K - - 2.5 K 5.0 K - 2.5 K - 2.5 K
VC-TTS-PS VC-TTS w/ PS 2.5 K 37.5 K - 2.5 K 5.0 K - 2.5 K - 2.5 K
VC-TTS-PS-1K VC-TTS w/ PS 1.0 K 15.0 K - 1.0 K 5.0 K - 2.5 K - 2.5 K

REC: Recorded data; PS-DA: Data augmented by pitch-shifting; VC-DA: Data augmented by voice conversion

training data consists of neutral recordings and PS-augmented data
from each speaker. As illustrated in Figure 1b, we use the resulting
VC model to convert all the source speaker’s emotional voice into
the target speaker’s voice. Simultaneously, to stabilize the training
process of the TTS model, we also convert the source speaker’s
neutral voice to the target speaker’s voice.

We use all the converted data, together with the target speaker’s
neutral recordings, to train the target speaker’s emotional TTS sys-
tem.

2.3. Text-to-speech

Our TTS model consists of two components: (1) an acoustic model
that converts an input phoneme sequence into acoustic features and
(2) a vocoder that converts the acoustic feature into the waveform.
For the acoustic model, we use FastSpeech 2 [28] with a Con-
former encoder [31] because of its fast but high-quality TTS capa-
bility [32]. To adapt FastSpeech 2 for emotional TTS, we condition
the model using external emotion code [33]. For the vocoder, we
use the high-fidelity harmonic-plus-noise Parallel WaveGAN (HN-
PWG) [27].

Figure 1 (c) shows the training process of TTS with the pro-
posed data augmentation. We mix synthetic and recorded data for
the target speaker and use them to train the acoustic model. At the
inference stage, the TTS model generates emotional speech by in-
putting text and an emotion code. Note that we do not use data aug-
mentation for training the vocoder because (1) it has been reported
that using a large amount of training data is not crucial for the
vocoder [34], and (2) our preliminary experiments also confirmed
subtle improvements when the amount of the source speaker’s data
was sufficiently large.

3. Experiments
3.1. Experimental setup

3.1.1. Database and feature extraction settings

For the experiments, we used two phonetically and prosodically
rich speech corpora recorded by two female Japanese professional
speakers, which represent data for the source and target speakers.
We sampled speech signals at 24 kHz with 16 bit quantization. The
source speaker data contained three speaking styles: neutral, hap-
piness, and sadness, whereas the target speaker data contained only
neutral style1.

We concatenated the 80-dimensional log-Mel spectrogram,
continuous log Fo, and V/UV with 5 ms analysis intervals as 82-
dimensional features. We used them as the target acoustic fea-
tures for both the VC and acoustic models. We calculated the log-
Mel spectrogram with a 40 ms window length. We extracted Fo

and V/UV using the improved time-frequency trajectory excitation
vocoder [35]. We obtained Fo for the acoustic features generated by
PS data augmentation by shifting the Fo extracted from the original
speech. We used V/UV extracted from the original speech as the

1The average sentence duration for each data set was 5.0, 4.7, 4.2,
and 5.1 seconds, respectively.

V/UV for the generated data. We normalized the acoustic features
so that they had a zero mean and unit variance for each dimension
using the statistics of the training data.

3.1.2. Model details

For the CycleGAN-based VC model, the generator and discrimina-
tor were composed of four and three residual blocks, respectively,
and each block consisted of two convolutional layers with leaky
ReLU activation. We set the kernel size to three for all the con-
volutional layers. We trained the VC model for 400 K steps using
an Adam optimizer [36]. We set the learning rate to 0.0002, and
reduced this by a factor of ten every 100 K steps. We set the mini-
batch size to 64. We set the weight of the proposed regularization
loss described in Section 2.2 to 0.1, and used the FFT sizes (32,
64, 128), window sizes (32, 64, 128), and hop sizes (8, 16, 32) for
the multi-resolution STFT loss. We used the identity mapping loss
only for the first 10 K steps [17].

For the TTS acoustic model, we used four Conformer and
Transformer blocks for the encoder and decoder, respectively. For
each block, we set the hidden sizes of the self-attention and feed-
forward layers to 384 and 1024, respectively. To achieve natural
prosody for Japanese, for the model, we used accent information as
external input [37]. For emotional TTS, we added emotion embed-
ding followed by a projection layer with 256-dimensional phoneme
and accent embedding. To improve the duration stability, we used
manually annotated phoneme durations. At the training stage, we
used a dynamic batch size with an average of 23 samples to create
a minibatch [38], and trained the models for 200 K steps using the
RAdam optimizer [39].

Table 1 summarizes the systems used in our experiments. We
trained the following TTS systems:

SRC-TTS: Baseline TTS model trained with the source speaker’s
recordings.

TGT-NEU-TTS: Baseline TTS model trained with the target
speaker’s recordings (neutral style alone).

MS-TTS: Baseline multi-speaker TTS model trained with source
and target speaker’s recordings.

VC-TTS: Baseline TTS model trained with target speaker’s
recordings and VC-augmented data.

VC-TTS-PS: Proposed TTS model trained with target speaker’s
recordings and PS-VC-augmented data

VC-TTS-PS-1K: Proposed TTS model similarly configured with
VC-TTS-PS system, but trained with a limited amount of
recordings.

As the vocoder, we trained HN-PWG [27] for 400 K steps with
the RAdam optimizer [39]. For training, we used 5,000 utterances
of neutral style, 2,500 utterances of happiness style, and 2,500 ut-
terances of sadness style from the source speaker, and 1,000 utter-
ances of neutral style from the target speaker. We used the same
vocoder for all the aforementioned TTS systems.
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Table 2: Naturalness, speaker similarity, and emotional similarity MOS test results with 95% confidence intervals. Results for the
highest score in the VC-based TTS systems are shown in bold.

Model
Naturalness Speaker similarity Emotional similarity

Neutral Happiness Sadness Neutral Happiness Sadness Happiness Sadness
Source 4.88 ± 0.05 4.84 ± 0.05 4.69 ± 0.07 - - - - -
SRC-TTS 4.56 ± 0.06 4.46 ± 0.08 4.40 ± 0.08 1.15 ± 0.05 1.28 ± 0.08 1.29 ± 0.08 3.48 ± 0.08 3.71 ± 0.07
TGT-NEU-TTS - - - - - - 1.69 ± 0.09 1.29 ± 0.07
MS-TTS 3.91 ± 0.09 2.85 ± 0.10 2.74 ± 0.11 2.85 ± 0.13 2.76 ± 0.11 2.51 ± 0.12 2.48 ± 0.10 2.72 ± 0.11
VC-TTS 4.06 ± 0.08 3.88 ± 0.10 4.00 ± 0.10 2.98 ± 0.12 2.89 ± 0.11 3.26 ± 0.11 3.33 ± 0.08 3.63 ± 0.07
VC-TTS-PS 4.03 ± 0.08 4.20 ± 0.09 4.00 ± 0.09 2.98 ± 0.12 2.87 ± 0.12 3.35 ± 0.10 3.82 ± 0.05 3.67 ± 0.07
VC-TTS-PS-1K 4.20 ± 0.08 4.08 ± 0.09 3.96 ± 0.11 3.19 ± 0.11 2.90 ± 0.12 3.31 ± 0.09 3.87 ± 0.04 3.63 ± 0.07

3.2. Evaluation

To evaluate the effectiveness of our proposed method, we con-
ducted subjective listening tests: 5-point naturalness mean opinion
score (MOS), 4-point speaker similarity MOS, and 4-point emo-
tional similarity MOS2.

We asked native Japanese raters to make a quality judgment.
The number of subjects for each evaluation was 14, 12, and 12,
respectively. For all the tests, we randomly selected 20 utterances
from the evaluation set for each system. In the naturalness evalu-
ation, we evaluated the recorded speech of the source speaker and
synthetic speech of five TTS systems, for a total of 360 utterances.
In the speaker similarity evaluation, we set the recorded speech of
the target speaker as a reference, and evaluated five TTS systems,
for a total of 300 utterances. Note that the reference samples con-
tained neutral, happiness, and sadness emotions, which constituted
of 25 seconds in total. In the emotional similarity test, we eval-
uated 240 pairs of utterances that consisted of the recorded emo-
tional speech of the source speaker and the synthetic speech from
six TTS systems. Note that we used the neutral TTS system of the
target speaker (i.e., TGT-NEU-TTS) as an anchor system only in
the emotional similarity test.

3.3. Results

The results of the MOS evaluations are shown in Table 2. The find-
ings can be summarized as follows: (1) VC data augmentation was
effective for improving naturalness and speaker/emotional similar-
ities over the multi-speaker TTS baseline (VC-TTS vs. MS-TTS),
particularly for emotional styles; and (2) the proposed PS data aug-
mentation further improved performance. In particular, naturalness
and emotional similarity significantly improved for happiness (VC-
TTS vs. VC-TTS-PS) while achieving high emotion reproducibil-
ity of the source speaker nearly the same or even better than SRC-
TTS.; and (3) our proposed method achieved competitive perfor-
mance, even with a limited number of training data (VC-TTS-PS
vs. VC-TTS-PS-1K). We observed that VC-TTS-PS-1K achieved
better naturalness and speaker similarity than VC-TTS-PS for the
neutral style. For naturalness, this could be explained by the source
speaker’s database having a more natural speaking style than the
target speaker, and the style of the source speaker was transferred
to the target speaker’s TTS when the relative amount of VC aug-
mented data is high (i.e., VC-TTS-PS-1K). For speaker similarity,
we hypothesized that it was caused by the difference of Fo statistics
of the training data. To verify this, we examined the Fo statistics of
pseudo neutral data used for training VC-TTS-PS and VC-TTS-
PS-1K, and found that the latter contained higher Fo on average
4.04 Hz. Because Fo of the target speaker was higher than that of
the source speaker in our experiments, higher-pitched samples of
VC-TTS-PS-1K tended to have higher speaker similarity for the
neutral style. We encourage readers to listen to the samples pro-
vided on our demo page3.

2Following the method used in the VC challenge [40], we used the
5-point responses 1 = Bad; 2 = Poor; 3 = Fair; 4 = Good; and 5 =
Excellent; and the 4-point responses 1 = Different, absolutely sure; 2 =
Different, not sure; 3 = Same, not sure; and 4 = Same, absolutely sure.

3https://ryojerky.github.io/demo_vc-tts-ps/

(a)

(b)

(c)
Figure 4: Fo distributions obtained from each emotion: (a) the
source speaker’s recorded data, (b) the target speaker’s VC-
augmented data, and (c) that with the proposed PS method.

To further verify the effectiveness of the proposed method, we
analyzed the Fo distributions of the original data and the pseudo
data generated by the VC model. As illustrated in Figure 4, the
distribution of Fo with PS data augmentation was closer in shape
to that of the original data for happiness. The results confirmed
that the VC model trained on the proposed PS-augmented data gen-
erated richer pitch variations that were close to natural recordings
compared with the VC model trained without PS data augmenta-
tion. By contrast, we observed similar distributions with and with-
out the proposed PS augmentation for sadness. This can be ex-
plained as follows: sadness is less dynamic and has fewer pitch
variations than happiness. The results suggest that our proposed
method was particularly suited for emotionally expressive and dy-
namic styles, such as happiness.

4. Conclusion
We proposed a cross-speaker emotion style transfer method for a
low-resource expressive TTS system, where expressive data is not
available for the target speaker. Our proposed method combines
PS-based and VC-based augmentation methods to stabilize train-
ing for both VC and TTS acoustic models. Subjective test results
showed that the FastSpeech 2-based emotional TTS system learned
by the proposed method improved naturalness and emotional simi-
larity compared with conventional methods. In the future, we aim
to apply the proposed method to more distinctive, expressive, and
dynamic styles of speech.
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