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Abstract
For personalized speech generation, a neural text-to-speech
(TTS) model must be successfully implemented with limited
data from a target speaker. To this end, the baseline TTS model
needs to be amply generalized to out-of-domain data (i.e., tar-
get speaker’s speech). However, approaches to address this out-
of-domain generalization problem in TTS have yet to be thor-
oughly studied. In this work, we propose an effective pruning
method for a transformer known as sparse attention, to improve
the TTS model’s generalization abilities. In particular, we prune
off redundant connections from self-attention layers whose at-
tention weights are below the threshold. To flexibly determine
the pruning strength for searching optimal degree of generaliza-
tion, we also propose a new differentiable pruning method that
allows the model to automatically learn the thresholds. Evalu-
ations on zero-shot multi-speaker TTS verify the effectiveness
of our method in terms of voice quality and speaker similarity.
Index Terms Text-to-speech, zero-shot, generalization, sparse
attention

1. Introduction
With the advancement of deep learning technologies, recent
studies in text-to-speech (TTS) have shown a rapid progress.
In terms of generation quality, single- and multi-speaker TTS
models can synthesize human-like voices with sufficient train-
ing data from the target speaker(s) [1–5]. Further, several few-
or zero-shot multi-speaker TTS models have recently been de-
veloped to synthesize out-of-domain (OOD) speech with lim-
ited data from the target speaker [6–11]. These models are
trained using a large multi-speaker dataset to learn a general
TTS mapping relationship conditioned on speaker representa-
tions. Then, they are either additionally fine-tuned with a few
samples of the target speaker (few-shot) or used directly (zero-
shot) for synthesis.

Especially, zero-shot multi-speaker TTS models [8–11] are
widely being studied due to their unique advantage of not re-
quiring any training data from the target speaker. A common ap-
proach of these models is to extract the speaker representations
from reference speech using a reference encoder [7, 12, 13].
These representations contain various prosodic characteristics
such as pronunciation style, speed [14, 15] of the reference
speech, as well as speaker identity. As such, the speaker rep-
resentation is learned to play a crucial role as a latent vector
that determines the prosodic characteristics of the synthesized
speech during training. During inference, the speaker repre-
sentation is extracted from the voice of the unseen speaker, en-
abling the generation of the desired voice.

However, zero-shot multi-speaker TTS models face the
problem of domain mismatch between training and inference,
unlike conventional TTS models that aim to synthesize only in-

domain speech (i.e., speech from seen speakers). Specifically,
the latter must be generalized only to the unseen text, whereas
the former must generalized not only to the unseen text but also
to the reference speech of unseen speakers. Therefore, the chal-
lenge of improving synthesis performance in zero-shot multi-
speaker TTS lies in generalizing the TTS models to OOD data,
which refers to speech from unseen speakers.

One additional challenge faced by zero-shot multi-speaker
TTS models is that they require varying levels of generaliza-
tion ability depending on the dataset they are trained on. When
there is a high degree of domain mismatch between the train-
ing and test data, such as differences in recording environ-
ments, the models require more generalization to prevent over-
fitting. Conversely, when there is little domain mismatch, over-
generalization can lead to degraded performance. Therefore,
finding the optimal strength of generalization is crucial for im-
proving the synthesis performance of these models. However,
current zero-shot multi-speaker TTS models lack a systematic
approach to this problem and have difficulty controlling the gen-
eralization strength once developed. While adjusting the num-
ber of parameters is a classical approach to controlling general-
ization [16], it can be a manual and time-consuming process.

To this end, we propose a new controllable generaliza-
tion method for zero-shot multi-speaker TTS models. In par-
ticular, we focus on the transformer [17], which is the foun-
dation for many TTS models. Our method draws on previ-
ous studies in various research fields (such as image genera-
tion and speech recognition) demonstrating the effectiveness of
optimizing the self-attention module in a generalization objec-
tive [18–22]. In particular, they enhanced generalization abil-
ities by adding sparsity to the self-attention connections. For
instance, Child et al. [18] factorized the self-attention matrix
into sparse subsets, and Kim et al. [21] proposed removing the
low-weight connections during inference.

In this study, we design a sparse attention method for zero-
shot multi-speaker TTS to successfully solve its OOD general-
ization problem. The method is implemented by pruning off the
connections from self-attention layer; we also propose a differ-
entiable pruning technique that can easily control the degree of
generalization. Our contributions are outlined below:
• New Application. We apply the sparse attention mecha-

nism to the TTS model, which eliminates redundant connec-
tions from the self-attention layer. Because the TTS model is
trained under a condition that only uses high-weight residual
connections, the sparse attention mechanism significantly im-
proves its generalization ability. In particular, adding sparsity
to the self-attention module reduces the number of parameters
engaged in the overall TTS training by preventing backprop-
agation of gradients through low-weight connections, which
alleviates overfitting.
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Figure 1: Overview of StyleSpeech. The speaker representa-
tion is extracted from the reference encoder and provided to the
encoder and decoder via Style-Adaptive Layer Normalization
technique.

• Novel Pruning Technique. We explore optimal pruning
techniques for the sparse attention. We first introduce a
vanilla pruning approach that eliminates the connections
whose attention weights are below a predetermined thresh-
old. To flexibly adjust the pruning strength in case of various
degrees of domain mismatch, we further propose a differen-
tiable pruning method that adopts learnable thresholds.

• Performance. Experiments on zero-shot TTS show that our
proposed method notably improves the performance of OOD
speech synthesis1.

2. Related Works
Owing to the increasing demand for customized voice synthe-
sis, the OOD generalization problem has recently been stud-
ied in zero-shot multi-speaker TTS works. StyleSpeech [7]
used meta-learning to make a TTS model effectively adapt
to OOD voice and conditioned speaker representations to the
model using few variables to minimize the domain mismatch.
For the same purpose, nnSpeech [8] introduced a speaker-
guided conditional varational autoencoder to define speaker
representations as Gaussian latent variables rather than high-
dimensional embeddings. Furthermore, GenerSpeech [11]
leveraged wav2vec2.0 [23], a contrastive model learned with
numerous speech data, to obtain more robust speaker represen-
tations. Unlike the abovementioned approaches, we use the
self-attention pruning method to directly generalize the basic
architecture (i.e., transformer) of the TTS model, implying that
it is applicable to other models with minimal modifications.

3. Proposed Method
We selected StyleSpeech [7] as a baseline because it is a rep-
resentative zero-shot multi-speaker TTS model built on a non-
autoregressive transformer. As depicted in Fig 1, its architec-
ture comprises a transformer-based phoneme encoder and mel-
spectrogram decoder, a variance adaptor, and a reference en-
coder. The variance adaptor, located between the encoder and
decoder, predicts the pitch, energy, and duration from phoneme-
level embeddings; it then expands these embeddings to frame-
level using the predicted duration values. The reference en-

1Audio samples are available at: https://hcy71o.github.
io/SparseTTS-demo/

coder extracts a speaker representation from the input refer-
ence speech and conditions it to the encoder and decoder via
Style-Adaptive Layer Normalization [7] technique. More de-
tails, including loss terms and model configurations, are pre-
sented in [2, 7].

3.1. Sparse Attention

We implement sparse attention by pruning redundant connec-
tions, and we only apply it to the decoder for the following two
reasons: 1) The sequence length (N ) of the decoder (frame-
level) is much longer than that of the encoder (phoneme-level),
indicating that the decoder has a significantly larger number of
self-attention connections (N×N ) than the encoder; as a result,
the decoder self-attention module requires more sparsity to be
generalized. 2) According to our investigation, applying sparse
attention to the encoder rather degrades the model performance
because it reduces the modeling capacity of the original self-
attention module. We define sparse masks and apply them to all
the attention heads of the decoder self-attention modules. De-
pending on the mask generation methods, we propose two types
of pruning techniques: vanilla and differentiable.

3.1.1. Vanilla Pruning

Given queries Q and keys K obtained by two linear transfor-
mations Wq and Wk, respectively, to the input sequence x,

Q = Wqx, K = Wkx, (1)

we first denote the attention probability of the h-th head of the
multi-head self-attention layer [17] as Ah:

Ah(i, j) = softmax

(
QhKh

T

√
d

)

(i,j)

, (2)

where Qh and Kh are the queries and keys of the h-th head,
respectively, and d is their dimension. Ah(i, j) indicates the
weight score of the i-th query corresponding to the j-th key. We
then define a sparse mask matrix SMh of h-th head as follows:

SMh
(i,j) =

{
1 if Ah(i, j) ≥ µi

0 if Ah(i, j) < µi

, (3)

µi =
1

N

N∑

j=1

Ah(i, j), (4)

where N is the length of the input sequence x. Applied to Ah,
the SMh mask prunes its weak connections, whose weights are
below the average attention weights µi along the key axis.

During the experiment, we observed that using a common
sparse mask combined along the head-axis outperforms apply-
ing SMh to each head individually. In detail, we consider each
head’s activated positions for all the other heads; we define an
adjusted sparse mask SMOR :=

⋃H
h=1 SM

h where H is the
number of heads, and identically apply it to all attention heads.
The SMOR mask is used during both training and inference.

3.1.2. Differentiable Pruning

In the vanilla pruning (VP) method, the threshold of SMh is
passively determined as the mean value of attention weights µi.
However, the optimal threshold values vary depending on the
number of layers, type of generation tasks, and degree of do-
main mismatch; thus, flexibly setting the threshold is prefer-
able. To this end, we propose a novel differentiable pruning
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Figure 2: Overview of the differentiable pruning. The soft
sparse mask is used during phase 1 of training, and the hard
sparse mask is used during phase 2 of training and during infer-
ence. The pruned attention head is multiplied with Vh (values
of h-th head) for succeeding process of self-attention operation.

(DP) method with learnable thresholds, inspired by [22] which
shares the same motivation in natural language processing task.

Fig. 2 illustrates the overview of DP. In contrast to VP,
which uses the predefined threshold, we first define a hard
sparse mask of h-th head SMh

hard that inherits the learnable
threshold θ/N :

SMh
hard(i,j) =

{
1 if Ah(i, j) ≥ θ/N

0 if Ah(i, j) < θ/N
, (5)

where θ is a trainable threshold parameter, and N is the length
of the sequence used to adjust the threshold value based on vari-
ations in input length. However, because the process of obtain-
ing the binary mask SMh

hard is not differentiable, we cannot
directly update θ by gradient descent. To solve this problem,
we additionally adopt a differentiable soft sparse mask SMh

soft

defined by a sigmoid function as follows:

SMh
soft = σ

(Ah − θ/N

T

)
, (6)

where T is the temperature set to 0.01 to approximate SMh
soft

to SMh
hard. The value of SMh

soft is close to 1 where the atten-
tion weight is higher than the threshold θ/N and is close to 0 in
the opposite case.

We then propose a two-phase training method, summarized
in Algorithm 1. In phase 1, the entire model is trained with orig-
inal TTS loss terms Ltts (i.e., loss terms of StyleSpeech [7])
using the soft sparse masks SMsoft to update model parame-
ters including thresholds θ. We also add sparsity loss Lsp as a
regularization term to ensure pruning behavior, as shown below:

Lsp =
1

LH

L∑

l=1

H∑

h=1

(
SM

h
soft −R

)2

, (7)

where the sparsity ratio R is a hyperparameter that indirectly
determines the pruning strength; L denotes the number of trans-
former layers, and H represents the number of heads in each
layer. Sparsity loss Lsp is defined as the average L2-distance
between the soft sparse mask’s mean value SM

h
soft and R

across all attention heads and decoder layers. This loss term
forces the model to be generalized to OOD data; without it,
thresholds θ do not converge to meaningful values during train-

Algorithm 1 Differentiable pruning - Training procedure
Phase 1: Apply the soft sparse masks SMsoft, and update the
model parameters including the thresholds θ with the original
TTS loss terms Ltts and additional regularization term Lsp

Phase 2: Apply the hard sparse masks SMhard determined by
the learned thresholds θ, and update the residual model param-
eters with training loss terms except Lsp

ing. This is because if only Ltts is used, the model obtains the
lowest training loss value when no connections are pruned (i.e.,
θ is stuck in 0) for in-domain data. The value of R is set be-
tween 0 and 1, and a lower R value prunes more connections.
In summary, two loss terms are used when updating θ: original
TTS loss terms Ltts and the regularization term Lsp. As men-
tioned previously, Ltts pulls θ down towards 0, while Lsp aims
to prevent this for generalization to OOD data. The threshold
is consequently balanced by two opposing losses, pruning off
self-attention connections only to the extent that it does not sig-
nificantly harm the original objective of minimizing Ltts. Thus,
the degree of generalization can be controlled by varying the
sparsity ratio R, while minimizing overgeneralization.

In phase 2, model parameters except θ are updated using the
hard sparse masks SMhard, whose thresholds θ are learned in
phase 1. Here, Lsp is not used and the model is trained under the
hard pruning condition (low-weight connections are completely
masked) with fixed pruning strength. This final model is used
during inference.

4. Experiments
4.1. Experimental Setup

Dataset and Preprocessing. We used two subset datasets from
LibriTTS [24] (train-clean-100 and train-clean-360) to train
our model, which contain 245 hours of speech from 1151 speak-
ers. For inference, VCTK [25] (108 unseen speakers) dataset is
used for zero-shot TTS. For the method of preprocessing text
and speech, we followed StyleSpeech [7].
Model Details. We experimentally evaluated the performance
of VP and DP considering StyleSpeech [7] as a baseline. Con-
sistent with [7], the encoder and decoder comprise 4 FFT blocks
[2] with 2 self-attention heads each. For DP, 4 threshold pa-
rameters θ were declared in each decoder FFT block and were
identically initialized to 0. The training configurations for all
implemented models were set to be the same as in [7], except
that the models were trained for 300k steps. In the case of DP,
we advanced to phase 2 after training for 40k steps in phase
1. For evaluation, we used the HiFi-GAN V1 vocoder [26] to
convert mel-spectrograms to audios. In addition, two references
were used for comparison: 1) ground truth audios and 2) audios
generated by HiFi-GAN V1 (Voc.) conditioned on ground truth
mel-spectrograms.
Evaluation Metrics. Regarding subjective metrics, mean opin-
ion score (MOS) evaluates the naturalness of speech, and simi-
larity MOS (SMOS) evaluates speaker similarity. Both metrics
were scored on a scale of 1-5 by 16 raters, and we present them
with 95% confidence intervals (CI). We used character error rate
(CER) and speaker embedding cosine similarity (SECS) to eval-
uate intelligibility and speaker similarity as objective metrics.
For CER, we transcribed the synthesized speech using the pre-
trained speech recognition model provided by the SpeechBrain
toolkit [27]. SECS is defined as the cosine similarity between
speaker embeddings derived from the pre-trained speaker ver-
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Table 1: Comparisons of MOS, SMOS with 95% CI, CER, and
SECS results of zero-shot TTS; we used the StyleSpeech frame-
work as the baseline system. Note that VP and DP denote the
vanilla and differentiable pruning techniques, respectively. For
DP, we conducted 3 experiments by varying the sparsity ratio
R. The best performances are in boldface.

Model MOS(↑) SMOS(↑) CER(↓) SECS(↑)

Ground Truth 4.76±0.07 - - -
GT mel + Voc. 4.67±0.08 - - -

Baseline 3.43±0.12 2.99±0.16 4.56 0.268
VP 3.46±0.12 3.10±0.15 5.17 0.275
DP(R = 0.50) 3.53±0.12 3.18±0.15 3.96 0.279
DP(R = 0.45) 3.76±0.11 3.23±0.15 3.96 0.278
DP(R = 0.40) 3.75±0.12 3.20±0.16 3.73 0.276

Table 2: MOS, SMOS with 95% CI, CER, and SECS results of
ablation studies. The best performances are in boldface.

Model MOS(↑) SMOS(↑) CER(↓) SECS(↑)

DP(R = 0.45) 3.76±0.11 3.23±0.15 3.96 0.278

w/o SMhard 3.65±0.11 3.02±0.16 4.21 0.274
w/o Lsp 3.46±0.12 2.87±0.15 5.77 0.263

ification model [28] from [27]. Thus, MOS and CER assess
speech quality, whereas SMOS and SECS assess similarity to
the target speaker.

4.2. Evaluation on Zero-Shot TTS
For zero-shot TTS, we used arbitrary text input and randomly
sampled one reference speech from each VCTK speaker for the
reference encoder’s input. 15 synthesized samples were used
for MOS and SMOS, and 100 samples were used for CER and
SECS.

From Table 1, we make the following observations: 1) The
model with VP outperforms the baseline in all metrics except
CER, demonstrating the generalization ability of the pruning
method. 2) All models with DP remarkably surpass the base-
line and the model with VP, particularly in terms of voice qual-
ity. 3) The results among models with DP show the trade-
off relationship between pruning strength and performance. In
the first viewpoint, the model is successfully generalized by
pruning more connections (R : 0.50 → 0.45), resulting in a
sharp increase in naturalness (+0.23 MOS). In contrast, exces-
sive pruning (R : 0.45 → 0.40) rather reduces the model’s
original modeling capacity (i.e., overgeneralization); it causes
a slight degradation in overall performance in our experiment.
Intuitively, pruning all connections is the same as removing the
entire self-attention module.

In summary, we conclude that DP significantly improves
zero-shot TTS performance. Owing to its ability to adjust prun-
ing strength, the model is also scalable to different degrees of
domain mismatch (e.g., small R in large domain mismatch).

4.3. Ablation Study
Table 2 shows the results of the ablation studies related to the
two DP design techniques. We chose DP with R = 0.45 as
the baseline because it performs best in terms of naturalness
and similarity. In the first experiment, we skipped the training
phase 2 that uses the hard masks SMhard; we only used the

Table 3: Final DP thresholds θ updated in training phase 1.

Model Threshold θ
Layer #1 Layer #2 Layer #3 Layer #4

DP(R = 0.50) 0.76 2.34 2.36 2.36
DP(R = 0.45) 1.70 3.53 4.18 4.18
DP(R = 0.40) 2.89 3.05 5.11 5.11

(a) R = 0.40 (b) R = 0.45 (c) R = 0.50

Figure 3: Pruned attention heads for the utterance “How many
attention connections are pruned?”. Samples are first heads of
the fourth decoder layers and are generated from DP with (a)
R = 0.40, (b) R = 0.45, and (c) R = 0.50.

soft masks SMsoft for training and inference. Results show
that the two-phase training method is effective. Concretely, in
phase 2, hard pruning with updated thresholds improves the
model’s generalization performance by completely excluding
low-weight connections during the text-to-mel conversion pro-
cess. In the second experiment, we removed the regularization
term Lsp, originally used in the training phase 1. Without Lsp,
the model shows poor performance because pruning does not
occur at all. We also discovered that the thresholds θ were not
updated from their initial value of 0, as noted in section 3.1.2.

4.4. Analysis of Differentiable Pruning
To further analyze DP, we present the updated final thresholds
θ of models with DP in Table 3. As expected, a smaller R value
generally leads to higher threshold values, indicating that more
connections are pruned. Fig. 3 represents the pruned atten-
tion heads of theses models using a specific text utterance and
random reference speech. The previously mentioned relation-
ship between R and pruning strength is also confirmed in the
figure. Remarkably, the pruned TTS models use only a few
self-attention connections for high synthesis quality, implying
that DP prevents the decoder from overfitting to in-domain data
and improves the generalization performance. More materials
of visualizations are in our demo page.

5. Conclusion
In this work, we proposed a self-attention pruning method
for improving the generalization abilities of zero-shot multi-
speaker TTS models. Furthermore, we investigated the opti-
mal pruning techniques and emphasized the importance of dif-
ferentiable pruning (DP), that can control the pruning strength
augmented with the proposed two-phase training method. We
then used it to generalize the mel-spectrogram decoder; evalu-
ation on zero-shot multi-speaker TTS confirmed its superiority
in terms of voice quality and speaker similarity. Future works
include the application of DP for more severe domain mismatch
cases.
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