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ABSTRACT

This paper proposes a multilingual, multi-speaker (MM) TTS
system by using a voice conversion (VC)-based data augmentation
method. Creating an MM-TTS model is challenging, owing to the
difficulties of collecting polyglot data from multiple speakers. To
address this problem, we adopt a cross-lingual, multi-speaker VC
model trained with multiple speakers’ monolingual databases. As
this model effectively transfers acoustic attributes while retaining
the content information, it is possible to generate each speaker’s
polyglot corpora. Subsequently, we design the MM-TTS model
with variational autoencoder (VAE)-based posterior embeddings.
It is to be noted that incorporating VC-augmented polyglot corpora
into the TTS training process might degrade synthetic quality, since
the corpora sometimes contain unwanted artifacts. To mitigate this
issue, the VAE is trained to capture the acoustic dissimilarity be-
tween the recorded and VC-augmented datasets. Through the selec-
tive choice of the posterior embeddings obtained from the original
recordings in the training set, the proposed model enables the gen-
eration of acoustically clearer voices.

Index Terms— Multilingual text-to-speech, data augmenta-
tion, voice conversion, variational autoencoder (VAE)

1. INTRODUCTION

Recent advancements in text-to-speech (TTS) systems have been
particularly noteworthy, especially with regard to monolingual TTS
models [1–3]. Therefore, recent research is focused on multilin-
gual TTS systems [4,5]. A prevailing concern in the development
of a multilingual TTS model is the substantial resources required
to assemble a polyglot data set. The processes involved in data
collection, curation, and validation are both time-consuming and
financially burdensome.

To address these limitations, cross-lingual TTS [6–8] systems
have been developed, where the TTS model is trained with a data
set of speakers speaking different languages. Subsequently, tech-
niques such as knowledge transfer [6] and speaker-content disen-
tanglement [7] have been utilized with the model to extract linguis-
tic information from input audio, distinct from speaker attributes.
However, because it is challenging to faithfully separate speaker
and linguistic information from the provided audio, the synthetic
voice tends to have low speaker similarity [9].

As an alternative, we introduce an effective data augmentation

†Current affiliation is LY Corp. due to a merger with Yahoo Japan Corp.

method using a voice conversion (VC) approach. Unlike the con-
ventional methods in [10–12], our proposedmethod employ a cross-
lingual, multi-speaker (CM) VC model by using the monolingual
databases collected from different linguistic background. Consid-
ering the limited data available per speaker, we anticipated that us-
ing a many-to-many voice conversion model to create a database
encompassing both multilingual and multi-speaker (MM) aspects
would enhance learning stability when building a TTS system [13].
Furthermore, the training process of the MM-TTS model became
more straightforward because the VC-augmentation negated the ne-
cessity for the additional modules for speaker and language disen-
tanglement.

However, simply combining the VC-augmented data with the
TTS training set is not always beneficial for improving synthetic
quality, since this might cause negative effects if poorly converted
samples are included. To address this issue, our proposed method
incorporates a posterior embedding from a variational autoencoder
(VAE) [14] into theMM-TTSmodel. VAEs are well known for cap-
turing latent representations of feature distribution and have been
employed in various TTS tasks [5,15,16]. Similarly, the proposed
VAE model is learned together with MM-TTS to differentiate be-
tween acoustic distribution in the original and augmented data in the
latent space. During the inference process, by selectively taking the
posterior embeddings obtained from the original recordings in the
training data, it is possible to further enhance synthetic qualitywhile
mitigating the possible degradation caused by theVC-augmentation.
This will be further investigated in objective and subjective eval-
uations, which confirm the superior performance of the proposed
method over the conventional ones.

2. PROPOSED METHOD

Our method involves a two-step procedure: Initially, we augment
multi-speaker monolingual databases to create multi-speaker poly-
glot databases by using the CM-VC. Subsequently, we model the
MM-TTS system using both recorded and augmented databases.

2.1. Data augmentation by voice conversion

Among the state-of-the-art VC models, we adopt a non-parallel
many-to-many Scyclone model as a base architecture thanks to
its straightforward and stable generation [17]. To effectively train
the CM-VC model, we also apply pitch-shift data augmentation
method [18], where each of monolingual training corpus is repro-
duced by adjusting pitch values in several semitone-levels. In our
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Fig. 1: Data augmentation process using CM-VC.

preliminary experiments, the quality of generated polyglot corpora
becomes more stable and natural because this process enables the
CM-VC to cover a variety of prosodies from multiple speaker and
languages.

Fig. 1 depicts the generation process of multi-speaker poly-
glot dataset. The pretrained CM-VC model converts the source
speaker’smonolingual (e.g., English) corpus into the target speaker’s
voice of which original recordings only contain another language
(e.g., Korean).

2.2. Multilingual, multi-speaker TTS

2.2.1. Unified phoneme representation

After data augmentation, we proceed to model the MM-TTS model.
However, to train a model across distinct languages, it is essential to
merge phoneme definitions, which differ by language, into a single
unified one. Therefore, we implement rule-based unified phoneme
representations to combine three distinct languages. Specifically,
our target dataset utilizes English, Korean, and Japanese data, each
with 42, 47, and 50 phoneme definitions, respectively. They are in-
tegrated into a single set containing 102 phonemes considering the
International Phonetic Alphabet (IPA) [19], and some phonemes
with similar pronunciations are merged. For instance, several un-
voiced phonemes (including the glottal stops and nasal sounds) that
exhibit minimal pronunciation differences across languages are uni-
fied. Additionally, certain vowels (e.g., a, e, i, o, u) that are similar
in Korean and Japanese are also unified. Ultimately, this standard-
ized set of phonemes is used in the TTS model. Details of merged
unified phoneme representations can be found in Table 1.

2.2.2. Posterior encoder

As described in section 1, simply incorporating augmented data into
the training set can lead to quality degradation¹. To address this is-
sue, we integrate a VAE posterior encoder within the TTS acoustic
model following the base architecture proposed in [20]. In general,
the posterior encoder takes the acoustic features during training and
maps their posterior distributions into latent space. Similar to this,

¹In our experiments, this is manifested as a “muffled sound”.

Table 1: Unified phoneme definitions comparing with the cor-
responding IPA symbols.

Original IPA symbolConsonants
(Pulmonic) Korean Japanese English

Unified
symbol

pʰ
ㅍ (파랑)

p
パ (パン)

p
p (pack) p

Bilabial b
ㅂ (바람)

b
ば (ばね)

b
b (back) b

tʰ
ㅌ (타다)

t
た (たび)

t
t (time) t

Alveolar d
ㄷ (다수)

d
ど (どう)

d
d (dog) d

kʰ
ㅋ (크기)

k
く (くる)

k
k (kiss) k

Plosive

Velar g
ㄱ (가방)

g
が (がく)

g
g (gaggle) g

Bilabial m
ㅁ (마을)

m
ま (まあ)

m
m (much) m

Nasal
Alveolar n

ㄴ (나무)
n

な (なみ)
n

n (note) n

Labiodental F

ふ (ふく)
f

f (fish) f

s
ㅅ (사랑)

s
さ (さよ)

s
s (soup) s

Alveolar tZ
ㅈ (자유)

z
ざ (ざん)

z
z (zip) z

Alveolo-palatal &
Postalveolar

C

し (しき)
S

sh (ship) sh

Fricative

Glottal h
ㅎ (하늘)

h
は (はな) h

Affricate Postalveolar tS
ち (ちゃ)

tS
ch (chair) ch

Trill &
Approximant Labiodental R

ら (らく)
ô

r (run) r

we guide the posterior encoder to focus solely on capturing the dis-
tributions of the recorded and augmented data by providing explicit
speaker and language information to the system (Fig. 2). Conse-
quently, as described in the t-SNE plot in Fig. 3, the data clusters in
the latent space become clearly distinguishable based on whether it
is derived from the recorded or augmented data.

Before synthesis, the posterior encoder selectively extracts pos-
terior embeddings from all the recorded data in the training set
while discarding those from the augmented ones. Subsequently, the
TTS model takes their average [21] as the posterior embedding in
the synthesis step. As this process enables the TTS outputs to have
distributions as similar as those of original recordings, the synthetic
quality is significantly improved. This will be further discussed in
section 3.3.

2.2.3. TTS synthesis

Fig. 2 demonstrates the synthesis framework of the proposed MM-
TTS model that consists of context encoder, autoregressive de-
coder and an external duration model [23–25]. As described in
section 2.2.1, the input text is mapped to the unified phoneme se-
quence and converted into linguistic vectors². At the same time, the
posterior, speaker and language embeddings are extracted from the

²The linguistic vectors consist of 432-dimensional linguistic contents that
encapsulate phoneme identity, accent, break, and positional information, etc.
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Fig. 2: MM-TTS Framework

corresponding encoders, concatenated with the linguistic vectors
and fed into a context encoder to obtain high-level linguistic em-
beddings. They are also fed into a duration predictor to upsample
the resulting linguistic embeddings to the frame-level. The autore-
gressive decoder transforms those features into acoustic vectors
and finally the vocoder generates the corresponding speech.

3. EXPERIMENTS

3.1. Database

We utilized an internal dataset comprising six speakers: male and
female native speaker for each language (English, Korean, and
Japanese). For each speaker, 500, 100, and 50 sentences were used
for training, validation, and testing, respectively. After training the
CM-VC model, the augmentation was performed for each speaker
using the data from other speakers as the source. As a result, each
speaker had a training set comprising 500 recorded and 2,500 aug-
mented audio samples. All of those corpora were used to train the
proposed MM-TTS model. Note that the validation and test sets
were the same as those used in the CM-VC task.

3.2. Model settings

3.2.1. CM-VC model

For the CM-VC model, the detailed setups followed our previous
work in [18] except for two changes: One was modifying the
structure from one-to-one to many-to-many by adding speaker’s
information (e.g., one-hot representation) to the generation process.

Fig. 3: t-SNE visualization of posterior embeddings obtained
from the training data. Deep blue circles and green squares
represent those from the recorded and augmented data, respec-
tively. The black line represents marginal boundary calculated
by a support vector machine [22].

The other was incorporating a single-Gaussian WaveRNN-based
vocoder [26] to generate time-domain waveforms.

3.2.2. MM-TTS model

For the MM-TTS model, we used duration-informed Tacotron 2
model as described in section 2.2.3. The major architecture fol-
lowed our previous work in [25] but we additionally introduced
three auxiliary encoders such as posterior, speaker and language
encoders. The posterior encoder consisted of six 2D convolution
layers, a GRU layer with 128 units, and two projection layers for ob-
tainingmean and log variance of latent variables. After the reparam-
eterization trick [14], the output is fed to additional projection layer
to form 32-dimensional posterior embedding. Learnable lookup-
tables were used for the speaker and language encoders, convert-
ing input IDs into a 64-dimensional speaker embedding and an 8-
dimensional language embedding, respectively.

3.3. Evaluations

To validate the performance of our method, we implemented three
different systems: CM-TTS, MM-TTS and MM-TTSvae. The
CM-TTS was a baseline cross-lingual and multi-speaker TTS
model that trained only with monolingual databases from multi-
ple speakers without any augmentation method. Therefore, lan-
guage transfer was conducted in the unspoken language. The
MM-TTSvae was the proposed multilingual and multi-speaker
TTS system trained with the CM-VC-augmented polyglot corpora
from multiple speakers. Note that the MM-TTS was the same with
MM-TTSvae but did not use the VAE-based posterior embedding.
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Table 2: Objective evaluation results with respect to different TTS systems. Note that the results within a same language were
averaged together (two speakers per a language).

English Korean JapaneseModel WER(%) CER(%) F0rmse(Hz) LSD(dB) WER(%) CER(%) F0rmse(Hz) LSD(dB) WER(%) CER(%) F0rmse(Hz) LSD(dB)
CM-TTS 3.11 1.29 37.58 4.58 19.88 6.88 29.64 4.64 16.04 10.50 25.75 4.53
MM-TTS 16.74 10.28 37.73 4.22 27.76 11.74 26.41 4.42 21.24 14.01 24.72 4.27

MM-TTSvae 4.87 2.34 36.57 4.15 15.13 4.36 26.28 4.59 14.45 9.51 24.24 4.36

Table 3: Naturalness MOS test results with 95% confidence interval with respect to different TTS systems. Note that the results
within a same language were averaged together (two speakers per a language).

First language : English First language : Korean First language : JapaneseModel English Korean Japanese English Korean Japanese English Korean Japanese
CM-TTS 2.71± 0.12 1.96± 0.11 2.16± 0.11 1.70± 0.08 2.75± 0.10 1.75± 0.09 1.77± 0.10 1.84± 0.10 2.93± 0.12
MM-TTS 2.93± 0.12 1.47± 0.08 1.91± 0.11 1.52± 0.08 2.15± 0.10 1.89± 0.09 1.96± 0.12 2.31± 0.13 2.98± 0.12

MM-TTSvae 3.13 ± 0.12 2.15 ± 0.12 2.20 ± 0.12 2.13 ± 0.09 3.03 ± 0.10 2.34 ± 0.11 2.30 ± 0.12 2.66 ± 0.12 3.15 ± 0.12
Recorded 4.65± 0.08 - - - 4.94± 0.03 - - - 4.73± 0.06

3.3.1. Objective evaluation

To evaluate the prediction accuracy of the acoustic model, we
measured root mean square error of the fundamental frequency
(F0rmse; Hz) and log spectral distance (LSD; dB). Note that
no corresponding ground truth audio was available for augmented
audio with transferred or converted language, therefore, we only
conducted evaluations on audio samples that had ground truth
recordings. The evaluation results shown in Table 2 verify that
our proposed methods (i.e., MM-TTS and MM-TTSvae) that in-
corporated data augmentation mostly outperformed the baseline
(i.e., CM-TTS) in both F0rmse and LSD. This suggests that the
data augmentation technique enhanced the generation accuracy of
acoustic features.

We also measured word error rate (WER; %) and character
error rate (CER; %) to evaluate the intelligibility of the synthetic
waveforms. We used the whisper-large-v3³ model to predict scripts
from generated audio samples and calculated the WER and CER
against the ground truth script. The results of this evaluation are pre-
sented in Table 2. In English, the performance of proposed model
(i.e., MM-TTSvae) did not exceed that of the baseline, though the
difference was marginal. Conversely, our proposed method sur-
passed the baseline performance in both Korean and Japanese. We
also found that the model, which simply incorporated augmented
data (i.e., MM-TTS), showed higher error rate compared to the pro-
posed model.

3.3.2. Subjective evaluation

We conducted naturalness MOS listening tests to evaluate the per-
spective quality of the synthetic speech.⁴ We synthesized audio by
randomly sampling 15 sentences for each of the 6 speakers from
the test set across 3 systems, resulting in a total of 270 audio sam-
ples. Given that there were two speakers per language, a total of
300 audio samples per language were evaluated. In this evaluation,

³https://huggingface.co/openai/whisper-large-v3
⁴Generated audio samples are available at the following URL:https://

christophyoon.github.io/MMV-TTS

10 participants per language were assigned and asked to rate each
audio sample on a 5-point scale: 1 = Bad, 2 = Poor, 3 = Fair, 4 =
Good, and 5 = Excellent. We asked participants to specifically rate
the overall naturalness of each audio sample.

The results are shown in Table 3 of which trends can be ana-
lyzed as follows: Firstly, when comparing models with and without
data augmentation (i.e., CM-TTS and MM-TTS), we observed
that simply applying data augmentation led to some level of qual-
ity degradation. This demonstrates that indiscriminately mixing
augmented data can lead to a degradataion in synthesized qual-
ity. Secondly, by utilizing VAE-based posterior embeddings to
incorporate latent information from recorded data, the MOS score
significantly improved across all languages (i.e., MM-TTS and
MM-TTSvae). Lastly, this trend remained consistent when com-
pared without data augmentation system (i.e., CM-TTS and MM-
TTSvae), demonstrating that our proposed method can produce
better-quality synthesized audio.

4. CONCLUSION

In this paper, we proposed an effective MM-TTS system that lever-
aged polyglot data augmentation using a pretrained CM-VC model.
Our method addressed the inherent challenges associated with col-
lecting polyglot data from multiple speakers by utilizing a CM-VC
model that was trained on a monolingual database from various
speakers. To address potential quality degradation stemming from
naively incorporating VC-augmented polyglot corpora, we em-
ployed the VAE-based posterior embedding that was trained to dis-
cern the acoustic differences between recorded and VC-augmented
datasets. Consequently, our proposed model produced better acous-
tic outputs by emphasizing posterior embeddings derived from the
original recordings during the inference phase.
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