SPEECH SYNTHESIS

- IMPROVED TIME-FREQUENCY TRAJECTORY EXCITATION

2015.12.10 EUNWOO SONG (宋銀宇)

SPEECH SYNTHESIS

Major issues on speech synthesis [Zen' 09]

- Limitations in vocoding
 - How to design excitation & spectral parameters ?
- Inaccuracies of acoustic models
 - How to model the acoustic parameters ?
 - How to estimate the acoustic model parameters accurately ?
- Over-smoothed outputs
 - How to lively generate speech parameters ?

Limitations in vocoding

- Improved time-frequency trajectory excitation
 - E. Song, Y.S. Joo, and H.G. Kang, "Improved time-frequency trajectory excitation modeling for a statistical parametric speech synthesis system," in *proc. of ICASSP*, 2015.

Limitations in vocoding

- Improved time-frequency trajectory excitation
 - E. Song, Y.S. Joo, and H.G. Kang, "Improved time-frequency trajectory excitation modeling for a statistical parametric speech synthesis system," in *proc. of ICASSP*, 2015.
- And its application to DNN-based speech synthesis
 - E. Song and H.G. Kang, "Deep neural network-based statistical parametric speech synthesis system using improved time frequency trajectory excitation modeling," in *proc. of INTERSPEECH*, 2015.

SPEECH SYNTHESIS

- CONVENTIONAL VOCODING TECHNIQUES

VOCODING TECHNIQUES (1/5)

Pulse-or-noise (PoN) based on speech production model [Atal' 82]

- Spectral part (vocal tract-related)
 - Spectral parameter : linear prediction coefficient (LPC), cepstral coefficient
- Excitation part (vocal source-related)
 - Voiced frame : periodic pulse
 - Unvoiced frame : Gaussian noise
 - Fundamental frequency (F0)

VOCODING TECHNIQUES (1/5)

Pulse-or-noise (PoN) based on speech production model [Atal' 82]

- Spectral part (vocal tract-related)
 - Spectral parameter : linear prediction coefficient (LPC), cepstral coefficient
- Excitation part (vocal source-related)
 - Voiced frame : periodic pulse
 - Unvoiced frame : Gaussian noise
- → Mechanical sound

• Fundamental frequency (F0)

VOCODING TECHNIQUES (2/5)

Mixed excitation linear prediction (MELP) [McCree' 95]

- Excitation signal is divided into fixed number of frequency bands
- Each frequency *band* is modeled by *either pulse or noise*

VOCODING TECHNIQUES (3/5)

STRAIGHT [Kawahara' 97]

- · Excitation signal is divided into fixed number of frequency bands
- Each frequency band is modeled by weight (band aperiodicity; BAP)

VOCODING TECHNIQUES (3/5)

STRAIGHT [Kawahara' 97]

- · Excitation signal is divided into fixed number of frequency bands
- Each frequency band is modeled by weight (band aperiodicity; BAP)

Fixing the boundary of each frequency band cannot fully represent the time-varying characteristics of various types of phonetic information

VOCODING TECHNIQUES (4/5)

Time-frequency trajectory excitation (TFTE) [Choy' 98]

• Pitch-dependent excitation signal is transformed into discrete Fourier transform (DFT) domain

Waveform interpolation (WI)

Each frequency bin is modeled by slowly evolving waveform (SEW) and rapidly evolving waveform (REW)

VOCODING TECHNIQUES (5/5)

Examples of vocoded speech

SPEECH SYNTHESIS

- IMPROVED TIME-FREQUENCY TRAJECTORY EXCITATION

E. Song, Y.S. Joo, and H.G. Kang, "Improved time-frequency trajectory excitation modeling for a statistical parametric speech synthesis system," in *proc. of ICASSP*, 2015.

HIGH QUALITY VOCODER: TFTE (1/3)

Framework of TFTE-based speech synthesis

HIGH QUALITY VOCODER: TFTE (2/3)

Time-frequency trajectory excitation (TFTE) [Choy' 98]

• TFTE has a length of one pitch period

$$u(n,\phi) = \sum_{k=1}^{P(n)/2} \left[A_k(n) \cos(k\phi) + B_k(n) \sin(k\phi) \right]$$

Decomposition of TFTE

• SEW: periodic components of excitation

$$u_{SEW}(n,\phi) = \sum_{m=1}^{M} h(m)u(n-m,\phi)$$

• REW: aperiodic components of excitation

$$u_{REW}(n,\phi) = u(n,\phi) - u_{SEW}(n,\phi)$$

n : frame index $\phi : freq. index$ P(n): pitch period $A_k(n), B_k(n): DFT coef.$

h(l):low-pass filter in the time axis

HIGH QUALITY VOCODER: TFTE (3/3)

Advantage of TFTE

• Efficiency of extracting time-varying periodicity in a unit of individual frequency bin

Limitation of TFTE

• Difficulties in modeling of TFTE parameters due to pitch-dependent dimension of TFTE

Parameterization method of TFTE: Improved TFTE (ITFTE)

MODELING OF TFTE: ITFTE (1/5)

Modeling of SEW [Song' 15-1]

 SEW magnitude is first divided into K number of frequency sub-block

$$\begin{bmatrix} c_{k,1} \\ \vdots \\ c_{k,J_k} \end{bmatrix}^T = \begin{bmatrix} u_{SEW}(n,J_{k-1}+1) \\ \vdots \\ u_{SEW}(n,J_{k-1}+J_k) \end{bmatrix}^T, \quad \sum_{k=1}^K J_k = P(n)/2$$

 $C_{k,j}$: j^{th} SEW magnitude of k^{th} sub-block J_k : length of k^{th} sub-block

MODELING OF TFTE: ITFTE (2/5)

Modeling of SEW [Song' 15-1]

• Then, each sub-block is transformed with discrete cosine transform (DCT)

$$C_{k,m} = \frac{1}{J_k} \sum_{j=1}^{J_k} c_{k,j} \cos\left(\frac{\pi}{J_k} (j - 0.5)(m - 1)\right)$$

MODELING OF TFTE: ITFTE (2/5)

Modeling of SEW [Song' 15-1]

• Then, each sub-block is transformed with discrete cosine transform (DCT)

$$C_{k,m} = \frac{1}{J_k} \sum_{j=1}^{J_k} c_{k,j} \cos\left(\frac{\pi}{J_k} (j-0.5)(m-1)\right)$$

Since the DCT is a good **decorrelator**, most energy of SEW magnitude is concentrated within the **first few** coefficients

MODELING OF TFTE: ITFTE (3/5)

Modeling of SEW [Song' 15-1]

 0-th coefficient of each sub-block is used for the HMM/DNN training

(# of parameter) = (# of sub-block)

 Remaining coefficients are stochastically generated by Gaussian random variables in the synthesis step

MODELING OF TFTE: ITFTE (4/5)

Modeling of SEW [Song' 15-1]

LP LP Analysis Synthesis Excitatio tistica Pitch F0 F0 Detection Excitation SFW Pitch-dependent Excitation SEV TFTE Reconstruction TETE REW Extraction REW

MODELING OF TFTE: ITFTE (5/5)

Modeling of REW [Song' 15-1]

- · REW magnitude is modeled by power contour estimation method
- Typically, Legendre orthonormal polynomial coefficients are used for the modeling

Full frequency band information of the SEW and REW can be reconstructed by *fixed number of model coefficients*

MODELING OF TFTE: ITFTE (5/5)

Modeling of REW [Song' 15-1]

- REW magnitude is modeled by power contour estimation method
- Typically, Legendre orthonormal polynomial coefficients are used for the modeling

Full frequency band information of the SEW and REW can be reconstructed by *fixed number of model coefficients*

SPEECH SYNTHESIS

- ITFTE MODELING FOR DNN-BASED SPEECH SYNTHESIS

E. Song and H.G. Kang, "Deep neural network-based statistical parametric speech synthesis system using improved time frequency trajectory excitation modeling," in proc. of INTERSPEECH, 2015.

Modeling of non-linear mapping function between contextual information and acoustic parameters [Zen' 13]

Analysis on trainability of ITFTE model [Song' 15-2]

 Trainability is measured by normalized root mean square error (NMSE) between original and generated ITFTE parameters

$$NMSE = \frac{1}{N} \sum_{n=1}^{N} \sqrt{\frac{\sum_{k=1}^{K} (x_{ori}(n,k) - x_{gen}(n,k))^{2}}{\sum_{k=1}^{K} (x_{ori}(n,k))^{2}}}$$

N : number of frame

K : dimension of parameter

- Model size is controlled by
 - Conventional HMM-based system
 - Scale factor of the minimum description length (MDL) criteria [Shinoda' 00]
 - Proposed DNN-based system
 - Number of layers (#L) and number of units (#U)

DNN-BASED SPEECH SYNTHESIS (3/8)

Analysis on trainability of ITFTE model [Song' 15-2]

• Average NMSE with 95% confidence interval (CI)

- NMSE of HMM-based system is larger than that of DNN-based one
- 95% CI of HMM-based system is wider than that of DNN-based one

It implies that excitation signal contains many frames with large errors, which would be expected to degrade naturalness of synthesized speech

DNN-BASED SPEECH SYNTHESIS (4/8)

Experiment setup [Song' 15-2]

Database	Korean male speaker		
Training/ validation/ test	2700(3.5 hour)/ 100/ 100 utterances		
Sampling rate	16 kHz		
Analysis window	20ms width, 5ms shift		
Linguistic feature	8 categorical features + 7 numerical features		
Acoustic feature		Feature Line spectral pairs SEW magnitude REW magnitude	$\frac{\text{dimension}}{24 + \Delta + \Delta \Delta}$ $18 + \Delta + \Delta \Delta$ $4 + \Delta + \Delta \Delta$
		log-F0	$1 + \Delta + \Delta \Delta$
		energy	$1 + \Delta + \Delta \Delta$

 \mathbf{O}

DNN-BASED SPEECH SYNTHESIS (5/8)

Experiment setup [Song' 15-2]

HMM topology	5-state, left-to-right HMM		
	Model size is controlled by MDL factor		
DNN Architecture	Layer dimension		
	Input	203-dim. binary features 7-dim numerical features	
	Output	144-dim. ITFTE parameters	
	Hidden	512x512, 512x512x512 1024x1024, 1024x1024x1024	
	Activation/ output function		
	sigmoid Normalization		
	Input	Zero-mean, unity-variance	
	Output	minmax. (0.01 to 0.99)	

DNN-BASED SPEECH SYNTHESIS (6/8)

Objective test results [Song' 15-2]

• Test results for different MDL factors (α) of HMM-ITFTE system

HMM-	LSD	F0 RMSE	SEW	REW
ITFTE	(dB)	(Hz)	NMSE	NMSE
α =3.0 (0.44M)	3.227	16.788	0.262	0.308
α =2.0 (0.68M)	3.188	16.732	0.261	0.307
α =1.0 (1.35M)	3.129	16.401	0.258	0.303
α=0.6 (2.65M)	3.098	16.759	0.257	0.301

• Test results for different architectures of DNN-ITFTE system

DNN-	LSD	F0 RMSE	SEW	REW
ITFTE	(dB)	(Hz)	NMSE	NMSE
512×2 (0.46M)	3.240	14.748	0.220	0.255
512×3 (0.71M)	3.192	13.218	0.218	0.254
$1024 \times 2 (1.41M)$	3.207	14.477	0.219	0.256
$1024 \times 3 (2.46M)$	3.189	15.766	0.219	0.254

ITFTE parameters generated by the DNN-based system contain smaller estimation errors than those generated by the HMM-based system

DNN-BASED SPEECH SYNTHESIS (7/8)

Subjective test results (A/B preference test) [Song' 15-2]

- · 20 utterances are randomly selected
- 12 listeners are asked to provide quality judgment

DNN-ITFTE system provides much higher perceptual quality than that of DNN-STRAIGHT and HMM-ITFTE

DNN-BASED SPEECH SYNTHESIS (8/8)

Examples of synthesized speech

Original			
HMM-ITFTE		Zano.	2000
DNN-ITFTE	Sull'	Supp.	2010
DNN-STR.			All N

Major issues on speech synthesis

- · Limitations in vocoding
- Inaccuracies of acoustic models
- Over-smoothed outputs

Improved time-frequency trajectory excitation (ITFTE)

• Parameterization method of TFTE vocoder for the HMM/DNN training

DNN-based speech synthesis using ITFTE method

Improvement of modeling accuracy

E-mail: sewplay@dsp.yonsei.ac.kr Homepage: http://dsp.yonsei.ac.kr/tts_woo

REFERENCE

[Atal' 82] B. S. Atal, "Predictive coding of speech at low bit rates," IEEE Trans. Comm., vol. 30, no. 4, pp. 600-614, 1982.

[Choy' 98] E. L. Choy, "Waveform interpolation speech coder at 4kbps," Ph.D. dissertation, McGill University, 1998.

[Kawahara' 97] K. Kawahara, et al., "Speech representation and transformation using adaptive interpolation of weighted spectrum: vocoder revisited," *in Proc. of ICASSP*, 1997.

[McCree' 95] A. McCree, and T. Barnwell, "A mixed excitation LPC vocoder model for low bit rate speech coding," *IEEE Trans. Speech and Audio Process.*, vol. 3, no.4, 1995.

[Shinoda' 00] K. Shinoda, et al., "MDL-based context-dependent subword modeling for speech recognition," *J. Acoust. Soc. Jpn(E)*, vol.21, no. 2, pp. 79-86, 2000.

[Song' 15-1] E. Song, et al., "Improved time-frequency trajectory excitation modeling for statistical parametric speech synthesis system," *in Proc. ICASSP*, 2015.

[Song' 15-2] E. Song, and H.G. Kang, "Deep neural network-based statistical parametric speech synthesis system using improved time-frequency trajectory excitation model," *in Proc. Interspeech*, 2015.

[Zen' 09] H. Zen, et al., "Statistical parametric speech synthesis," Speech Comm., vol. 51, no. 11, pp. 1039-1064, 2009.

[Zen' 13] H. Zen, et al., "Statistical parametric speech synthesis using deep neural networks," in Proc. ICASSP, 2013.

Thank you

a numer sy un