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SPEECH SYNTHESIS

Major issues on speech synthesis [Zen’ 09]

• Limitations in vocoding

• How to design excitation & spectral parameters ?

• Inaccuracies of acoustic models

• How to model the acoustic parameters ?

• How to estimate the acoustic model parameters accurately ?

• Over-smoothed outputs

• How to lively generate speech parameters ?
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TODAY’S TALK

Limitations in vocoding

• Improved time-frequency trajectory excitation 

• E. Song, Y.S. Joo, and H.G. Kang, “Improved time-frequency trajectory excitation modeling for a 

statistical parametric speech synthesis system,” in proc. of ICASSP, 2015.
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TODAY’S TALK

Limitations in vocoding

• Improved time-frequency trajectory excitation 

• E. Song, Y.S. Joo, and H.G. Kang, “Improved time-frequency trajectory excitation modeling for a 

statistical parametric speech synthesis system,” in proc. of ICASSP, 2015.

• And its application to DNN-based speech synthesis 

• E. Song and H.G. Kang, “Deep neural network-based statistical parametric speech synthesis system 

using improved time frequency trajectory excitation modeling,” in proc. of INTERSPEECH, 2015.

4

Feature
Extraction

SPEECH
DATABASE

Model
Training

Parameter 
Generation

Waveform
Synthesis

Statistical
Model

Output
Waveform

Text



SPEECH SYNTHESIS
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- CONVENTIONAL VOCODING

TECHNIQUES



Pulse-or-noise (PoN) based on speech production model [Atal’ 82]

• Spectral part (vocal tract-related)

• Spectral parameter : linear prediction coefficient (LPC), cepstral coefficient

• Excitation part (vocal source-related)

• Voiced frame : periodic pulse

• Unvoiced frame : Gaussian noise

• Fundamental frequency (F0)
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→ Mechanical sound
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Mixed excitation linear prediction (MELP) [McCree’ 95]

• Excitation signal is divided into fixed number of frequency bands

• Each frequency band is modeled by either pulse or noise
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STRAIGHT [Kawahara’ 97]

• Excitation signal is divided into fixed number of frequency bands

• Each frequency band is modeled by weight (band aperiodicity; BAP)
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STRAIGHT [Kawahara’ 97]

• Excitation signal is divided into fixed number of frequency bands

• Each frequency band is modeled by weight (band aperiodicity; BAP)
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Fixing the boundary of each frequency band cannot fully represent the 

time-varying characteristics of various types of phonetic information
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Time-frequency trajectory excitation (TFTE) [Choy’ 98]

• Pitch-dependent excitation signal is transformed into discrete Fourier transform (DFT) domain

• Each frequency bin is modeled by slowly evolving waveform (SEW) and rapidly evolving 

waveform (REW)
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Periodic component of excitation

Remaining noisy component

Waveform interpolation (WI)
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Examples of vocoded speech
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Original PoN STRAIGHT TFTE

PoN: pulse or noise
TFTE: time-frequency trajectory excitation
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- IMPROVED TIME-FREQUENCY

TRAJECTORY EXCITATION

E. Song, Y.S. Joo, and H.G. Kang, “Improved time-frequency trajectory excitation modeling 

for a statistical parametric speech synthesis system,” in proc. of ICASSP, 2015.



Framework of TFTE-based speech synthesis
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[ Analysis ] [ Synthesis ]

HIGH QUALITY VOCODER: 

TFTE (1/3)



Time-frequency trajectory excitation (TFTE) [Choy’ 98]

• TFTE has a length of one pitch period

Decomposition of TFTE

• SEW: periodic components of excitation

• REW: aperiodic components of excitation
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Advantage of TFTE

• Efficiency of extracting time-varying periodicity in a unit of individual frequency bin

Limitation of TFTE

• Difficulties in modeling of TFTE parameters due to pitch-dependent dimension of TFTE

1
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Parameterization method of TFTE: Improved TFTE (ITFTE)

HIGH QUALITY VOCODER: 
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Modeling of SEW [Song’ 15-1]

• SEW magnitude is first divided into K number of 

frequency sub-block
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Modeling of SEW [Song’ 15-1]

• Then, each sub-block is transformed with discrete 

cosine transform (DCT)
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Modeling of SEW [Song’ 15-1]

• Then, each sub-block is transformed with discrete 

cosine transform (DCT)
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Since the DCT is a good decorrelator,

most energy of SEW magnitude is concentrated 

within the first few coefficients
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Modeling of SEW [Song’ 15-1]

• 0-th coefficient of each sub-block is used for the 

HMM/DNN training

(# of parameter) = (# of sub-block)

• Remaining coefficients are stochastically generated 

by Gaussian random variables in the synthesis step
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[ Normalized histogram of remaining coefficients ]

2nd block 18th block
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Modeling of REW [Song’ 15-1]

• REW magnitude is modeled by power contour estimation method

• Typically, Legendre orthonormal polynomial coefficients are used for the modeling

2
2

Full frequency band information of the SEW and REW

can be reconstructed by fixed number of model coefficients
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- ITFTE MODELING FOR

DNN-BASED SPEECH SYNTHESIS

E. Song and H.G. Kang, “Deep neural network-based statistical parametric speech synthesis system 

using improved time frequency trajectory excitation modeling,” in proc. of INTERSPEECH, 2015.



Modeling of non-linear mapping function between contextual information 

and acoustic parameters [Zen’ 13]
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DNN-BASED
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Analysis on trainability of ITFTE model [Song’ 15-2]

• Trainability is measured by normalized root mean square error (NMSE) between 

original and generated ITFTE parameters

• Model size is controlled by

• Conventional HMM-based system

• Scale factor of the minimum description length (MDL) criteria [Shinoda’ 00]

• Proposed DNN-based system

• Number of layers (#L) and number of units (#U)
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Analysis on trainability of ITFTE model [Song’ 15-2]

• Average NMSE with 95% confidence interval (CI)

• NMSE of HMM-based system is larger than that of DNN-based one

• 95% CI of HMM-based system is wider than that of DNN-based one

2
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It implies that excitation signal contains many frames with large errors, 

which would be expected to degrade naturalness of synthesized speech

DNN-BASED
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Experiment setup [Song’ 15-2]
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Database

dimension

Training/ validation/ test

Sampling rate

Analysis window

Linguistic feature

Acoustic feature

2700(3.5 hour)/ 100/ 100 utterances

20ms width, 5ms shift

8 categorical features + 7 numerical features

16 kHz

Korean male speaker

Line spectral pairs

SEW magnitude

REW magnitude

log-F0

energy

24 + Δ + ΔΔ

18 + Δ + ΔΔ

4 + Δ + ΔΔ

1 + Δ + ΔΔ

1 + Δ + ΔΔ

Feature

DNN-BASED
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Experiment setup [Song’ 15-2]
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HMM topology

Layer dimensionDNN Architecture

Model size is controlled by MDL factor

5-state, left-to-right HMM

Input

Output

Hidden

203-dim. binary features

7-dim numerical features

144-dim. ITFTE parameters

512x512,  512x512x512

1024x1024,  1024x1024x1024

Activation/ output function 

Input

Output

sigmoid

Normalization

Zero-mean, unity-variance

min.-max. (0.01 to 0.99)

DNN-BASED
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DNN-BASED

SPEECH SYNTHESIS (6/8) 

Objective test results [Song’ 15-2]

• Test results for different MDL factors (α) of HMM-ITFTE system

• Test results for different architectures of DNN-ITFTE system

3
0

ITFTE parameters generated by the DNN-based system contain 

smaller estimation errors than those generated by the HMM-based system



Subjective test results (A/B preference test) [Song’ 15-2]

• 20 utterances are randomly selected

• 12 listeners are asked to provide quality judgment

3
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DNN-ITFTE system provides much higher perceptual quality than

that of DNN-STRAIGHT and HMM-ITFTE

DNN-BASED
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Examples of synthesized speech
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Original

HMM-ITFTE

DNN-ITFTE

DNN-STR.

DNN-BASED
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SUMMARY

Major issues on speech synthesis

• Limitations in vocoding

• Inaccuracies of acoustic models

• Over-smoothed outputs

Improved time-frequency trajectory excitation (ITFTE)

• Parameterization method of TFTE vocoder for the HMM/DNN training

DNN-based speech synthesis using ITFTE method

• Improvement of modeling accuracy

3
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E-mail: sewplay@dsp.yonsei.ac.kr

Homepage: http://dsp.yonsei.ac.kr/tts_woo
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Thank you 


