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Introduction
Text-to-speech (TTS): Synthesize speech signal from text input
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Introduction

Solutions

①: Speaker adaptation
②: Data augmentation 
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“안녕하세요, 당신의 똑똑한 비서 클로바 입니다. 무엇을 도와드릴까요?”
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“난 약한 친구들을 괴롭히는 심술쟁이는 딱 질색이야!”
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TTS-by-TTS

Train target TTS model 

via large-scale corpora synthesized by TTS model



TTS-by-TTS
2020 Engineering day: 가짜 목소리 DB로 고품질 음성합성기를 만들어보자 (HDTS 황민제님)

https://share.navercorp.com/neday2020/lecture/245259
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TTS-by-TTS
Train target TTS model via large-scale corpora synthesized by TTS model
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(ex. 100,000 utterances)

If the amount of training data is not enough...



TTS-by-TTS
Train target TTS model via large-scale corpora synthesized by TTS model
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Database
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Self-augmentation
(ex. 100,000 utterances)

Many of synthetic corpora contain poorly generated speech samples



TTS-by-TTS
Train target TTS model via large-scale corpora synthesized by TTS model
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(ex. 100,000 utterances)

Merely increasing synthetic data is not always advantageous



TTS-by-TTS
Train target TTS model via large-scale corpora synthesized by TTS model
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Data-selective TTS augmentation

Method



Target TTS model
Duration informed Tacotron 2 with variational autoencoder (VAE)
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It is crucial to design a well-structured TTS model 

to synthesize high-quality speech database
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Duration informed Tacotron 2 with variational autoencoder (VAE)

Attention
Tacotron 2

Decoder
Tacotron 2

Encoder

Synthetic
Waveforms

Vocoding
Model

Acoustic
Features

Input
Text



Target TTS model
Duration informed Tacotron 2 with variational autoencoder (VAE)

Linguistic
Features

Positional
Encoder

Tacotron 2
Decoder

Tacotron 2
Encoder

Duration
Model

Synthetic
Waveforms

Vocoding
Model

Acoustic
Features



Target TTS model
Duration informed Tacotron 2 with variational autoencoder (VAE)

Linguistic
Features

Positional
Encoder

Tacotron 2
Decoder

Tacotron 2
Encoder

Duration
Model

Reference
Encoder

𝝁

𝝈𝟐

𝒛

FC

FC

Random
Sampling

Synthetic
Waveforms

Vocoding
Model

Acoustic
Features

FC FC

Acoustic
Features



VAE
Duration informed Tacotron 2 with variational autoencoder (VAE)
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“제가 당신의 위로가 되고 싶어요. 기분 쳐지지 말고 파이팅 하세요.”
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Duration informed Tacotron 2 with variational autoencoder (VAE)
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“제가 당신의 위로가 되고 싶어요. 기분 쳐지지 말고 파이팅 하세요.”
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Classifier
Ranking support vector machine (RankSVM) with VAE’s posterior distribution
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Ranking support vector machine (RankSVM) with VAE’s posterior distribution
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Ranking support vector machine (RankSVM) with VAE’s posterior distribution
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VAE can be a good feature representation between synthetic and recorded samples
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RankSVM
Score relative attributes between binary classes



RankSVM
Score relative attributes between binary classes

(a) Recorded = 1.0 (c) Synthetic = 0.0(b) Rank = 0.3

(a) Recorded = 1.0 (c) Synthetic = 0.0(b) Rank = 0.7?

?



RankSVM
Score relative attributes between binary classes

(a) Recorded = 1.0 (c) Synthetic = 0.0(b) Rank = 0.3
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Classifier

Questions

①: Ranking score   vs   Speech quality ?
②: How to determine decision criteria ?



Verification
Ranking support vector machine (RankSVM) with VAE’s posterior distribution

1. Ranking score   vs   Speech quality 
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Verification
Ranking support vector machine (RankSVM) with VAE’s posterior distribution

1. Ranking score   vs   Speech quality 
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Selected M utterances

Without any augmentation
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Ranking support vector machine (RankSVM) with VAE’s posterior distribution
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 40K would be the best



Data-selective TTS augmentation
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Database

Korean female professional speaker 

# of utterances
Training: 1,000
Validating: 270
Testing: 130

Sampling rate: 24 kHz

“블루투스 무선 연결을 통해 최대 15m 떨어진 곳에서도 음악을 재생할 수 있다.”
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TTS model: Duration informed Tacotron2 with VAE
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Text scripts: Crawled from news articles

Generated 80K speech samples

TTS-based data augmentation

2020 Engineering day: 가짜 목소리 DB로 고품질
음성합성기를 만들어보자 (HDTS 황민제님)
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RankSVM-based data selection

Selected 40K speech samples
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TTS retraining with large-scale synthetic corpora

Retrained target TTS model
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Subjective mean opinion score (MOS) tests

[ Baseline ] [ Proposed ]

“찜나라는 아구나라와 풍년해물탕 아귀찜나라 못난이 아구나라 등이 있네요. 자세한 결과는 네이버 클로바 앱에서 확인하세요.”
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Subjective mean opinion score (MOS) tests

20 listeners / 20 samples for each system

5-point naturalness responses
5: Excellent
4: Good
3: Fair
2: Poor
1: Bad

[ Baseline ] [ Proposed ]



Experiment
Subjective mean opinion score (MOS) tests

20 listeners / 20 samples for each system

5-point naturalness responses
5: Excellent
4: Good
3: Fair
2: Poor
1: Bad
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Data-selective TTS augmentation

Summary



Summary
How to design TTS model with limited amount of training data ?
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Summary
Ranking support vector machine (RankSVM) with VAE’s posterior distribution

[ VAE representation ] [ RankSVM classifier ]

We proposed a TTS-driven data-selective augmentation technique. From the large-scale synthetic corpora, a RankSVM with 
VAE’s posterior distribution determined the originality that represents how the acoustic characteristics of the generated 

speech was similar to those of the natural recordings. By selectively including the synthetic data with the recorded one, the 
performance of the retrained TTS system has been improved significantly
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Ranking support vector machine (RankSVM) with VAE’s posterior distribution
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We proposed a TTS-driven data-selective augmentation technique. From the large-scale synthetic corpora, a RankSVM with 
VAE’s posterior distribution determined the originality that represents how the acoustic characteristics of the generated 

speech was similar to those of the natural recordings. By selectively including the synthetic data with the recorded one, the 
performance of the retrained TTS system has been improved significantly
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