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Introduction

Text-to-speech (TTS): Synthesize speech signal from text input
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Introduction

Deep learning-based TTS system
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Deep learning-based TTS system
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Introduction

Solutions

@: Speaker adaptation
@: Data augmentation
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Deep learning-based TTS system

Solution @: Speaker adaptation
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Introduction

Deep learning-based TTS system

Solution @: Data augmentation
using voice conversion (VC)
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Introduction

Deep learning-based TTS system

Solution @: Data augmentation
using TTS
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Data-selective TTS augmentation

TTS-by-TTS



TTS-by-TTS

Train target TTS model
via large-scale corpora synthesized by TTS model



TTS-by-TTS
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TTS-by-TTS

Train target TTS model via large-scale corpora synthesized by TTS model

TTS augmentation
(ex. 100,000 utterances)

Database
(100 hours)
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TTS-by-TTS

Train target TTS model via large-scale corpora synthesized by TTS model

Self-augmentation
(ex. 100,000 utterances)

Database

(100 hours)

Target TTS

Model " N Speech

Speech Text

If the amount of training data is not enough...



TTS-by-TTS

Train target TTS model via large-scale corpora synthesized by TTS model

Self-augmentation
(ex. 100,000 utterances)

Database

(100 hours) .

Target TTS
Model

Target TTS
<— Speech Text 8

Database e

(1 hour)

Many of synthetic corpora contain speech samples



TTS-by-TTS

Train target TTS model via large-scale corpora synthesized by TTS model

Self-augmentation
(ex. 100,000 utterances)

Database

(100 hours) .

Target TTS
Model

Target TTS

<— Speech Text Model

Database
(1 hour)

increasing synthetic data is always advantageous



TTS-by-TTS

Train target TTS model via large-scale corpora synthesized by TTS model
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It is very important to choose synthetic data
that are beneficial to training process



Data-selective TTS augmentation

Method



Target TTS model

Duration informed Tacotron 2 with variational autoencoder (VAE)
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Target TTS
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It is crucial to design a model
to synthesize speech database
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Target TTS model

Duration informed Tacotron 2 with variational autoencoder (VAE)

NATURAL TTS SYNTHESIS BY CONDITIONING WAVENET ON MEL SPECTROGRAM
PREDICTIONS
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Target TTS model

Duration informed Tacotron 2 with variational autoencoder (VAE)

TACOTRON-BASED ACOUSTIC MODEL USING PHONEME ALIGNMENT
FOR PRACTICAL NEURAL TEXT-TO-SPEECH SYSTEMS

Takuma Okamoto', Tomoki Toda*", Yoshinori Shigal, and Hisashi Kawai*

'National Institute of Information and Communications Technology, Japan
Information Technology Center, Nagoya University, Japan

—)|

Tacotron 2 Tacotron 2 '
S| Acoustic
Encoder Decoder Features

|

Vocoding
Model

!

Synthetic
Waveforms



Linguistic
Features

Target TTS model

Duration informed Tacotron 2 with variational autoencoder (VAE)
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VAE

Duration informed Tacotron 2 with variational autoencoder (VAE)
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VAE

Duration informed Tacotron 2 with variational autoencoder (VAE)
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VAE

Duration informed Tacotron 2 with variational autoencoder (VAE)
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VAE

Duration informed Tacotron 2 with variational autoencoder (VAE)
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VAE

Duration informed Tacotron 2 with variational autoencoder (VAE)
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VAE

Duration informed Tacotron 2 with variational autoencoder (VAE)

V4

Z  Latent vector ~ N (u, 6?)




VAE

Duration informed Tacotron 2 with variational autoencoder (VAE)
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Target TTS model

Duration informed Tacotron 2 with variational autoencoder (VAE)
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Target TTS model

Duration informed Tacotron 2 with variational autoencoder (VAE)
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It is crucial to design a model
to synthesize speech database



Classifier

Ranking support vector machine (RankSVM) with VAE's posterior distribution

IIl Classifier II Qualified
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Ranking support vector machine (RankSVM) with
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Classifier

Ranking support vector machine (RankSVM) with

U
Concate- B E<— Reference * Recorded
i o Encoder [&— Acoustic
nation Ek— Features
u )
Concate- > Ek_ Reference 4 Synthetic
i o Encoder I— Acoustic
nation E<— Features




Classifier

Ranking support vector machine (RankSVM) with
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Classifier

with VAE's posterior distribution
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RankSVM

Score between binary classes

Relative Attributes
Devi Parikh Kristen Grauman
Toyota Technological Institute Chicago (TTIC) University of Texas at Austin
dparikh@ttic.edu grauman@cs.utexas.edu
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Figure 1. Binary attributes are an artificially restrictive way to describe Figure 2. Distinction between learning a wide-margin ranking function
images. While it is clear that (a) is smiling, and (c) is not, the more in- (l‘l_ght) that_ enfprces the (_ieSIred ordering on training points (1-6) , and a
formative and intuitive description for (b) is via relative attributes: he is wide-margin binary classifier (left) that only separates the two classes (+

smiling more than (a) but less than (c). Similarly, scene (e) is less natural and —), and does not necessarily preserve a desired ordering on the points.

than (d), but more so than (f). Our main idea is to model relative attributes
via learned ranking functions, and then demonstrate their impact on novel
forms of zero-shot learning and generating image descriptions.



RankSVM

Score between binary classes
Relative Attributes
Devi Parikh Kristen Grauman
Toyota Technological Institute Chicago (TTIC) University of Texas at Austin
dparikh@ttic.edu grauman@cs.utexas.edu
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Figure 1. Binary attributes are an artificially restrictive way to describe

images. While it is clear that (a) is smiling, and (c) is not, the more in-

formative and intuitive description for (b) is via relative attributes: he is (a) Recorded = 1.0 (b)
smiling more than (a) but less than (c). Similarly, scene (e) is less natural

than (d), but more so than (f). Our main idea is to model relative attributes

via learned ranking functions, and then demonstrate their impact on novel

forms of zero-shot learning and generating image descriptions.
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RankSVM

Score between binary classes
Relative Attributes
Devi Parikh Kristen Grauman
Toyota Technological Institute Chicago (TTIC) University of Texas at Austin
dparikh@ttic.edu grauman@cs.utexas.edu
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Figure 1. Binary attributes are an artificially restrictive way to describe
images. While it is clear that (a) is smiling, and (c) is not, the more in-
formative and intuitive description for (b) is via relative attributes: he is
smiling more than (a) but less than (c). Similarly, scene (e) is less natural
than (d), but more so than (f). Our main idea is to model relative attributes
via learned ranking functions, and then demonstrate their impact on novel
forms of zero-shot learning and generating image descriptions.
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Classifier

with VAE's posterior distribution

H
. Concate- E(_ Reference * Record?d
Binary class: 1 , o2 Encod [&— Acoustic
nation Ek_ ncoder Features
e Recorded samples
Asl A Synthetic samples l
‘:%I‘g.
f‘{ﬁ ud
o'& ® .:.
.o&# T ﬂ
. Concate- Ek_ Reference ‘Generat.ed
Binary class: O , o2 Encod [&—— Acoustic
nation E<_ ncoaer Features




Classifier

with VAE's posterior distribution
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Classifier

Ranking support vector machine (RankSVM) wit
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Classifier

Ranking support vector machine (RankSVM) with VAE's posterior distribution
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Classifier

Ranking support vector machine (RankSVM) with VAE's posterior distribution
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Classifier

Questions

@: Ranking score vs Speech quality ?
@: How to determine decision criteria ?



Verification

Ranking support vector machine (RankSVM) with VAE's posterior distribution
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2. How to determine decision criteria
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OpenSMILE features
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openSMILE — The Munich Versatile and Fast Open-Source
Audio Feature Extractor
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Institute for Human-Machine Institute for Human-Machine
Communication Communication

Technische Universitat

Technische Universitat
Miinchen Miinchen

80290 Minchen, Germany 80290 Miinchen, Germany

2. How to determine decision criteria o o

Institute for Human-Machine
Technische Universitat

80290 Miinchen, Germany
woellmer@tum.de



Verification

Ranking support vector machine (RankSVM) with VAE's posterior distribution
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Verification

Ranking support vector machine (RankSVM) with
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Data-selective TTS augmentation

Evaluations



Experiment
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Korean female professional speaker

# of utterances
Training: 1,000
Validating: 270
Testing: 130

Sampling rate: 24 kHz



Experiment

TTS model: Duration informed Tacotron2 with VAE
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Experiment

TTS-based data augmentation

Generation

Text scripts: Crawled from news articles
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Experiment

RankSVM-based data selection
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Experiment

TTS retraining with large-scale synthetic corpora
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Experiment

Subjective mean opinion score (MOS) tests
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Experiment

Subjective mean opinion score (MOS) tests

20 listeners / 20 samples for each system

5-point naturalness responses
5: Excellent
4: Good
3: Fair
2: Poor
1: Bad
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Experiment

Subjective mean opinion score (MOS) tests

20 listeners / 20 samples for each system

5-point naturalness responses
5: Excellent
4: Good
3: Fair
2: Poor
1: Bad
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Data-selective TTS augmentation

summary



Summary

How to design TTS model with limited amount of training data ?
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Summary

Ranking support vector machine (RankSVM) with VAE's posterior distribution
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We proposed a TTS-driven data-selective augmentation technique. From the large-scale synthetic corpora, a

determined the originality that represents

with

. By selectively including the synthetic data with the recorded one, the
performance of the retrained TTS system has been improved significantly



Summary

Ranking support vector machine (RankSVM) with VAE's posterior distribution
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We proposed a TTS-driven data-selective augmentation technique. From the large-scale synthetic corpora, a RankSVM with
VAE's posterior distribution determined the originality that represents how the acoustic characteristics of the generated
speech was similar to those of the natural recordings. By including the with the recorded one, the
performance of the system has been significantly
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