ENGINEERING DAY

음성 합성 모델로 음성 합성 모델 만들기

송은우 / HDTS

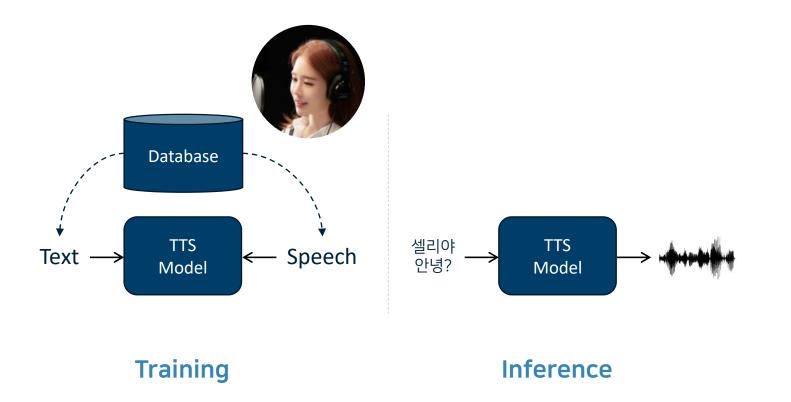
ENGINEERING DAY

Data-selective TTS augmentation

송은우 / HDTS

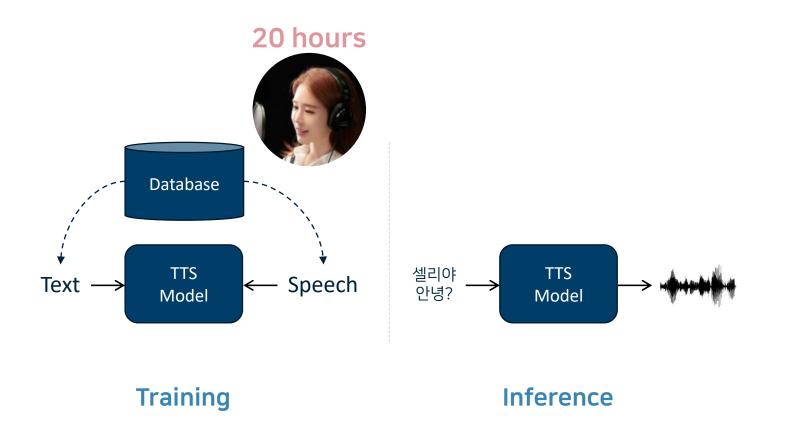
Text-to-speech (TTS): Synthesize speech signal from text input

Deep learning-based TTS system



Human-like voice quality 🙄

Deep learning-based TTS system

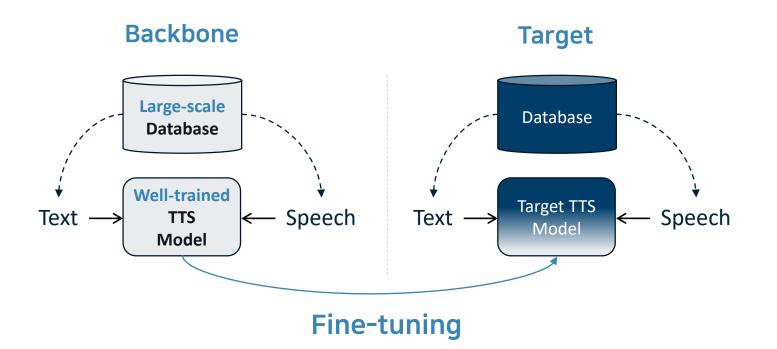


Require huge amount of speech recordings

Solutions Speaker adaptation Data augmentation

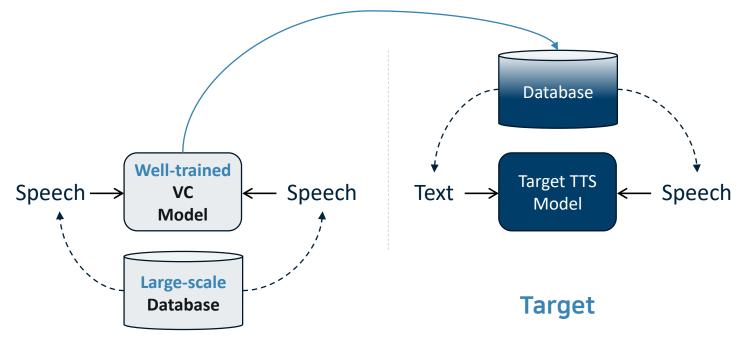
Deep learning-based TTS system

Solution 1: Speaker adaptation



Deep learning-based TTS system

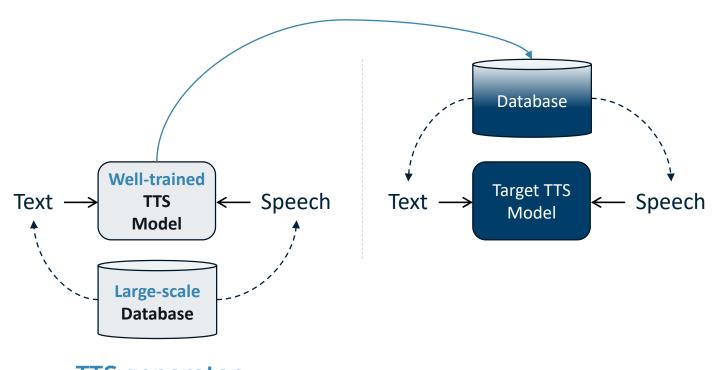
Solution 2: Data augmentation using voice conversion (VC)



VC generator

Deep learning-based TTS system

Solution 2: Data augmentation using TTS



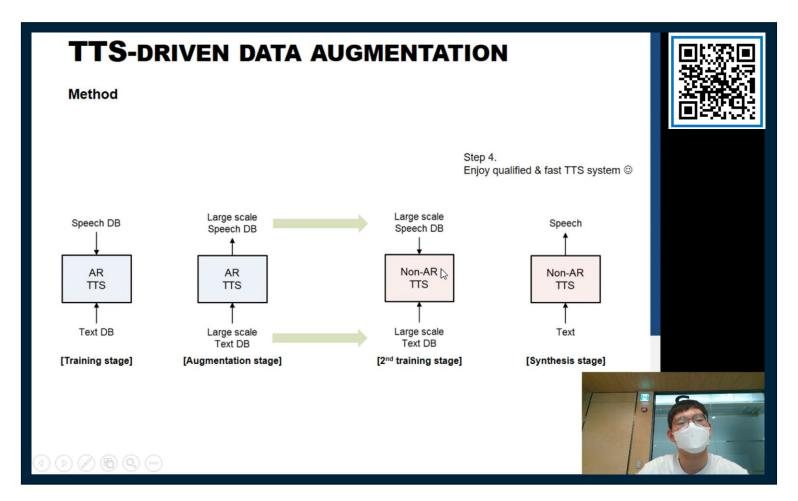
TTS generator

Data-selective TTS augmentation

TTS-by-TTS

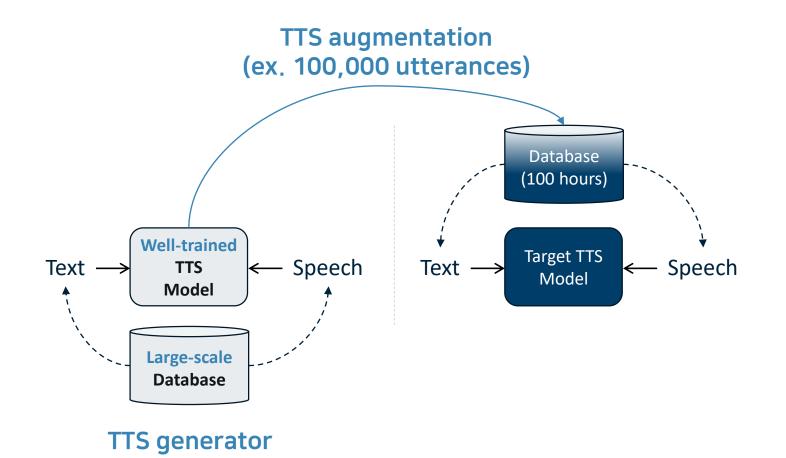
Train target TTS model via large-scale corpora synthesized by TTS model

2020 Engineering day: 가짜 목소리 DB로 고품질 음성합성기를 만들어보자 (HDTS 황민제님)

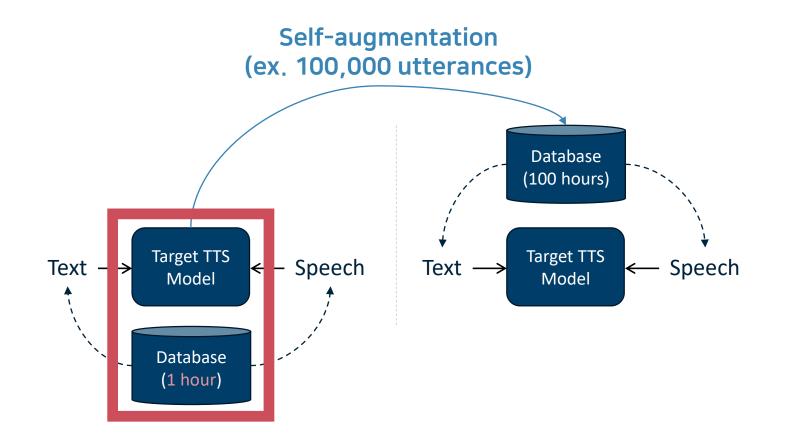


https://share.navercorp.com/neday2020/lecture/245259

Train target TTS model via large-scale corpora synthesized by TTS model

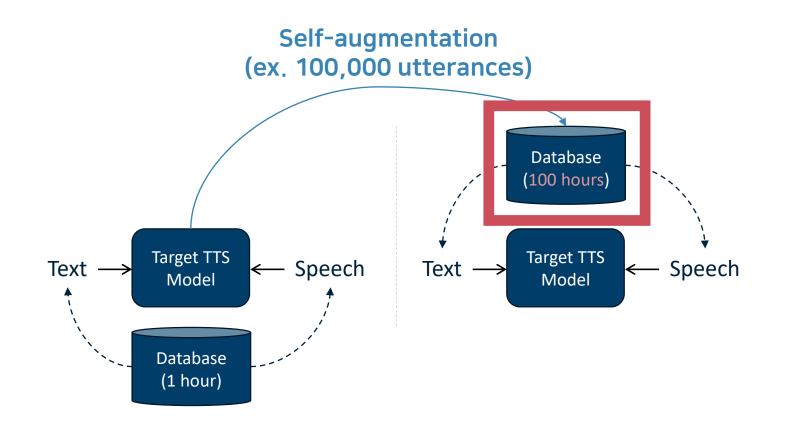


Train target TTS model via large-scale corpora synthesized by TTS model



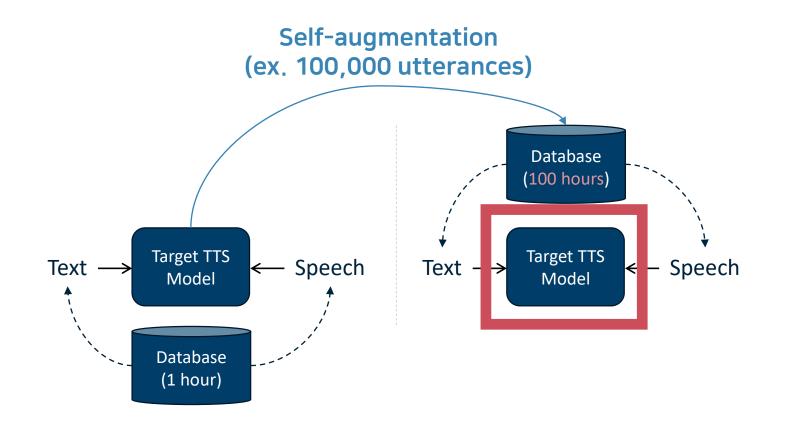
If the amount of training data is not enough...

Train target TTS model via large-scale corpora synthesized by TTS model



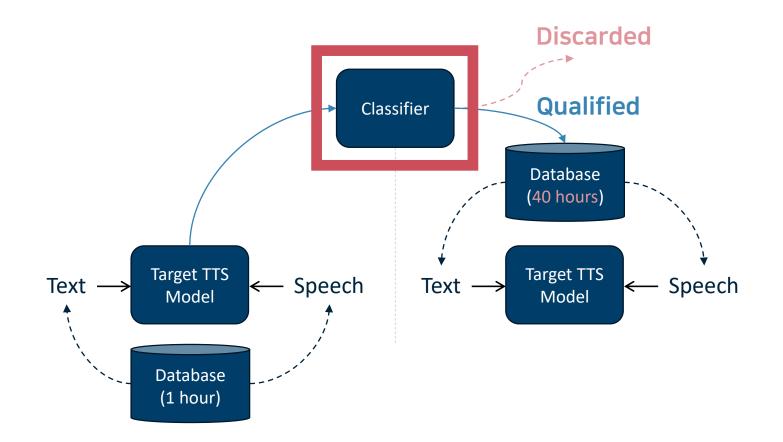
Many of synthetic corpora contain poorly generated speech samples 💬

Train target TTS model via large-scale corpora synthesized by TTS model



Merely increasing synthetic data is not always advantageous

Train target TTS model via large-scale corpora synthesized by TTS model

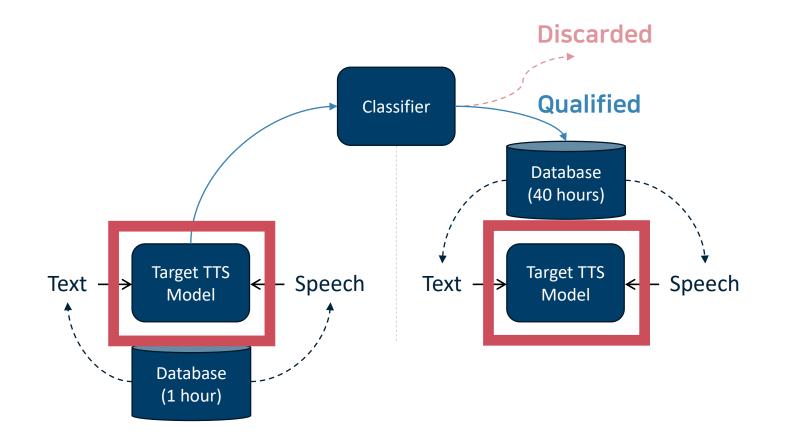


It is very important to selectively choose synthetic data that are beneficial to training process

Data-selective TTS augmentation

Method

Duration informed Tacotron 2 with variational autoencoder (VAE)



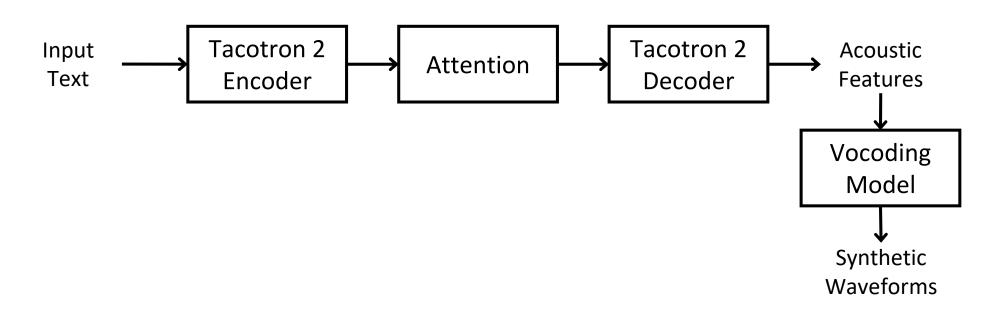
It is crucial to design a well-structured TTS model to synthesize high-quality speech database

Duration informed Tacotron 2 with variational autoencoder (VAE)

NATURAL TTS SYNTHESIS BY CONDITIONING WAVENET ON MEL SPECTROGRAM PREDICTIONS

Jonathan Shen¹, Ruoming Pang¹, Ron J. Weiss¹, Mike Schuster¹, Navdeep Jaitly¹, Zongheng Yang^{*2}, Zhifeng Chen¹, Yu Zhang¹, Yuxuan Wang¹, RJ Skerry-Ryan¹, Rif A. Saurous¹, Yannis Agiomyrgiannakis¹, and Yonghui Wu¹

> ¹Google, Inc., ²University of California, Berkeley, {jonathanasdf,rpang,yonghui}@google.com

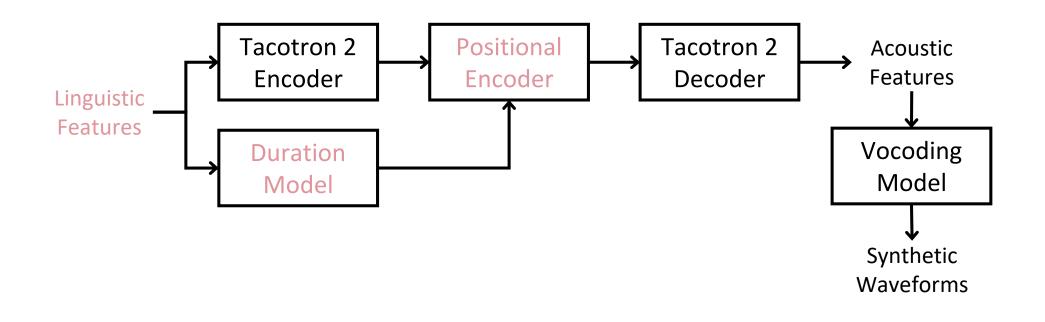


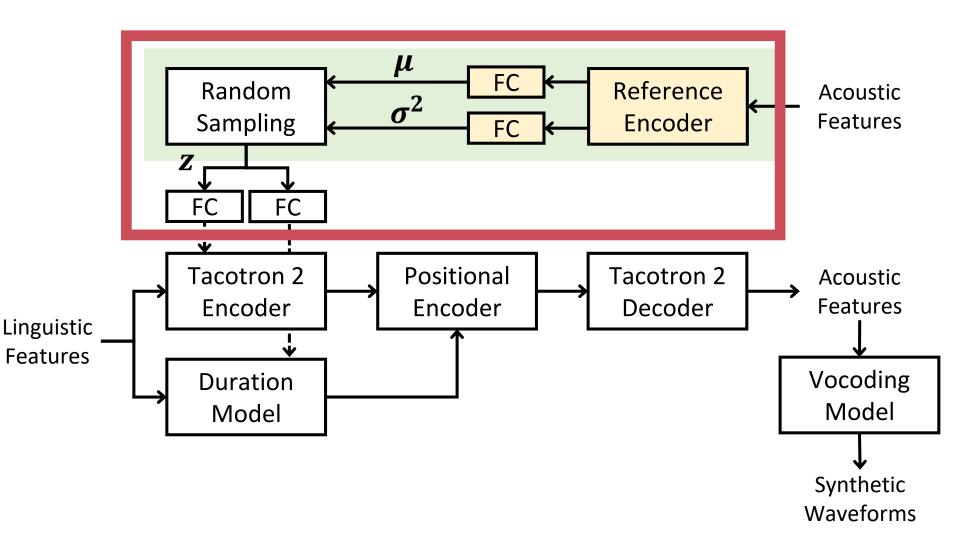
Duration informed Tacotron 2 with variational autoencoder (VAE)

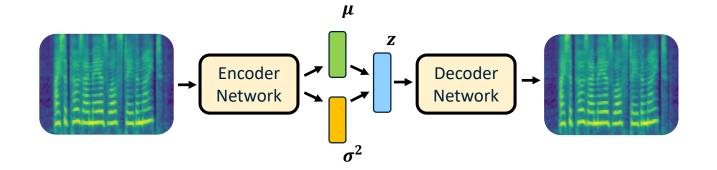
TACOTRON-BASED ACOUSTIC MODEL USING PHONEME ALIGNMENT FOR PRACTICAL NEURAL TEXT-TO-SPEECH SYSTEMS

Takuma Okamoto¹, Tomoki Toda^{2,1}, Yoshinori Shiga¹, and Hisashi Kawai¹

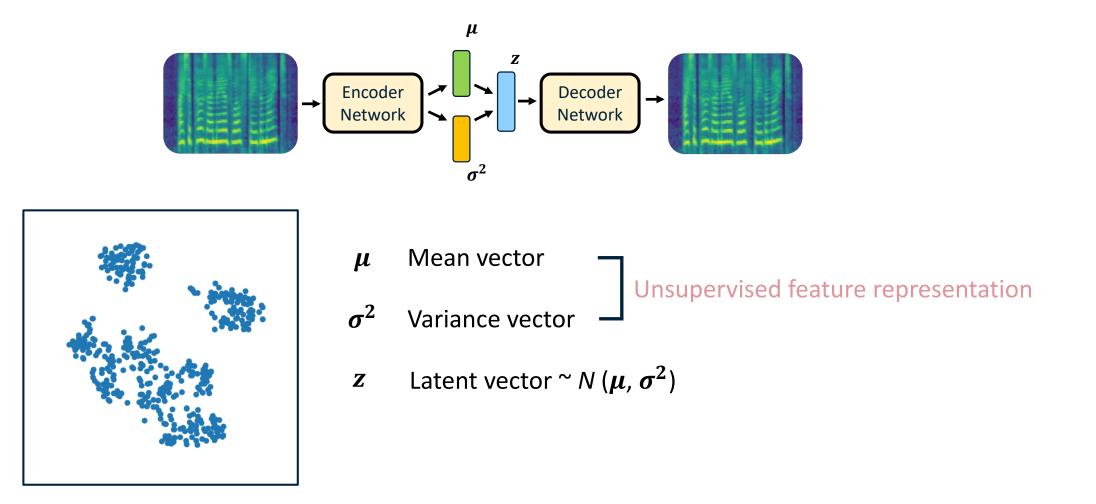
¹National Institute of Information and Communications Technology, Japan ²Information Technology Center, Nagoya University, Japan

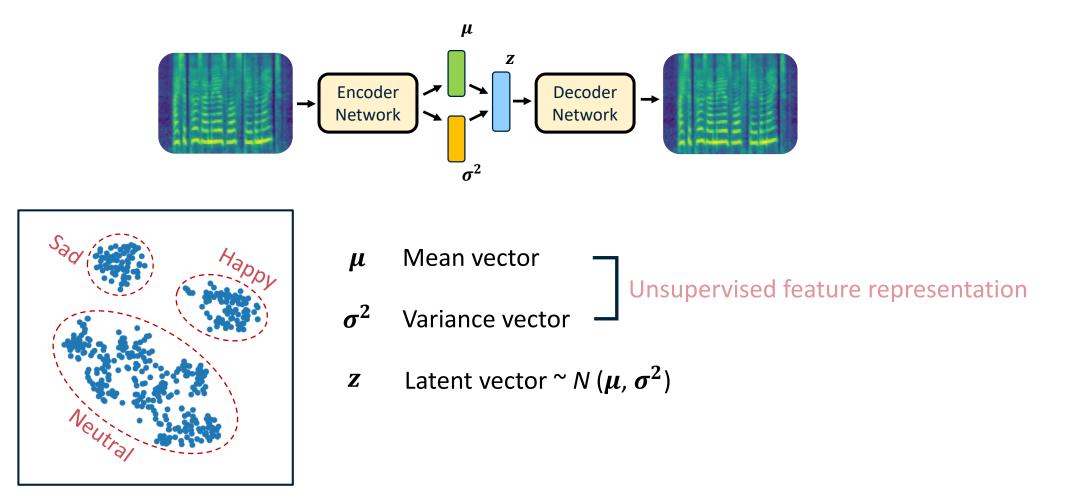


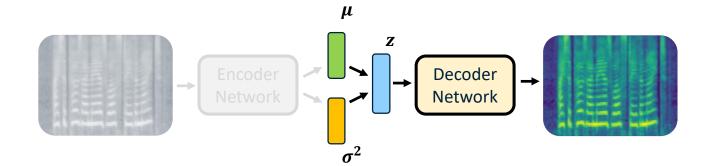


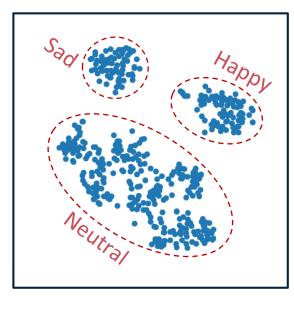


- μ Mean vector
- σ^2 Variance vector
- z Latent vector ~ $N(\mu, \sigma^2)$

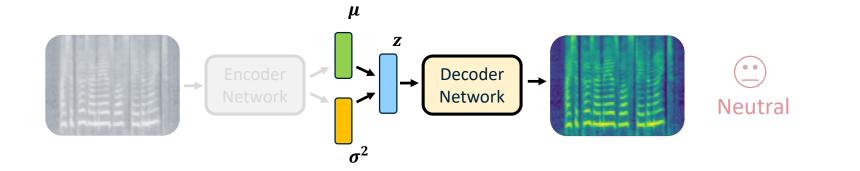


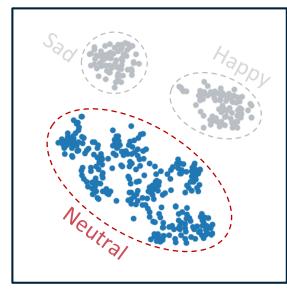






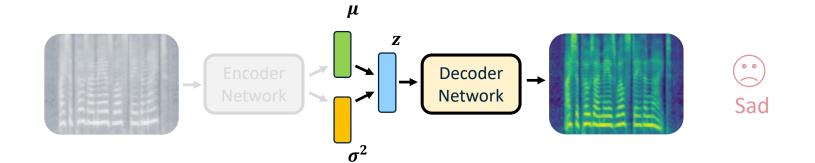
- $\begin{array}{c} \mu & \text{Mean vector} \\ \sigma^2 & \text{Variance vector} \end{array} \end{bmatrix} \text{Unsupervised feature representation}$
- **z** Latent vector ~ $N(\mu, \sigma^2)$ Variations to output

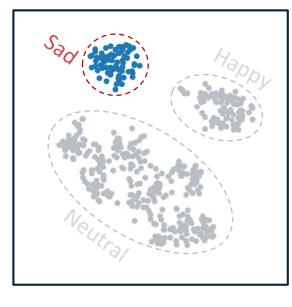




- $\begin{array}{c} \mu & \text{Mean vector} \\ \sigma^2 & \text{Variance vector} \end{array} \end{bmatrix} \text{Unsupervised feature representation}$
- **z** Latent vector ~ $N(\mu, \sigma^2)$ Variations to output

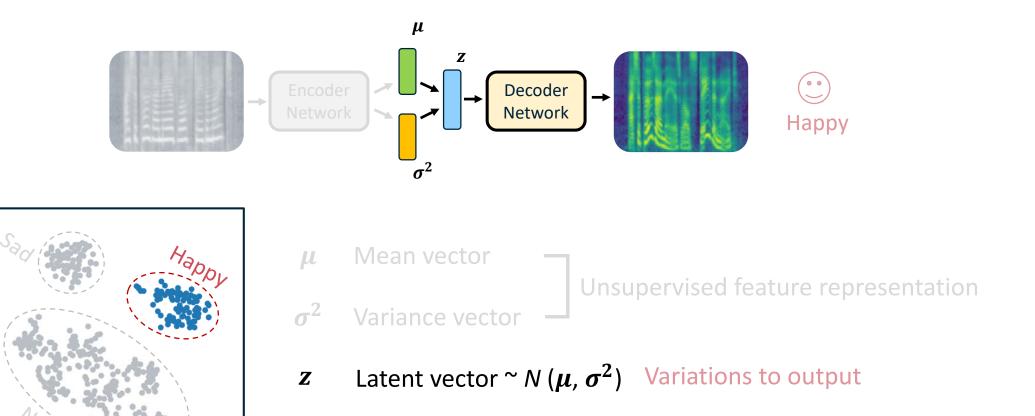
"제가 당신의 위로가 되고 싶어요. 기분 쳐지지 말고 파이팅 하세요."



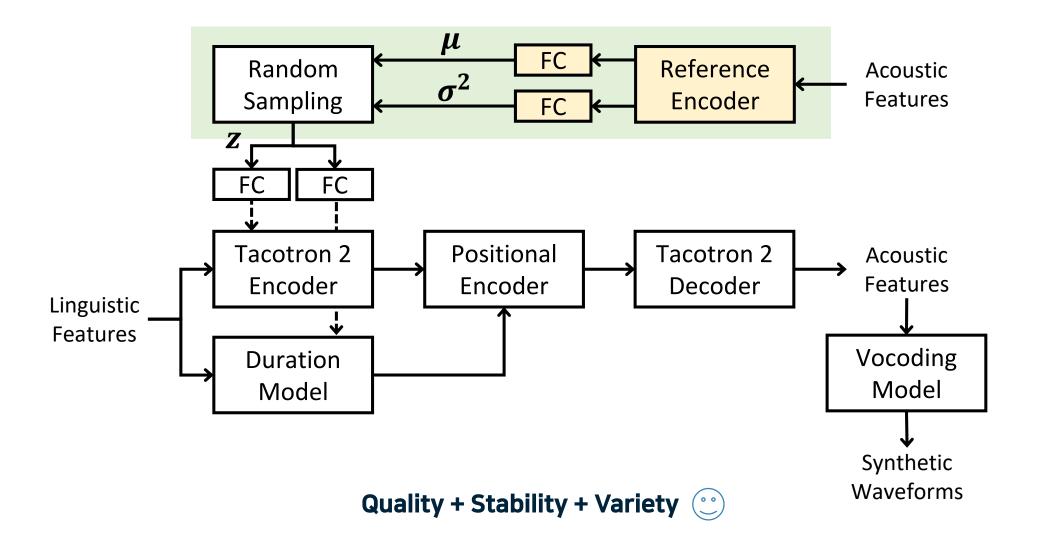


- $\begin{array}{c} \mu & \text{Mean vector} \\ \sigma^2 & \text{Variance vector} \end{array} \end{bmatrix} \text{Unsupervised feature representation}$
- **z** Latent vector ~ $N(\mu, \sigma^2)$ Variations to output

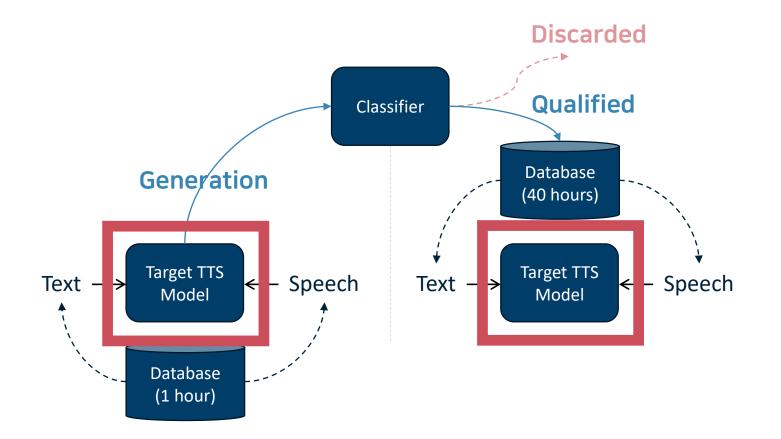
"제가 당신의 위로가 되고 싶어요. 기분 쳐지지 말고 파이팅 하세요."



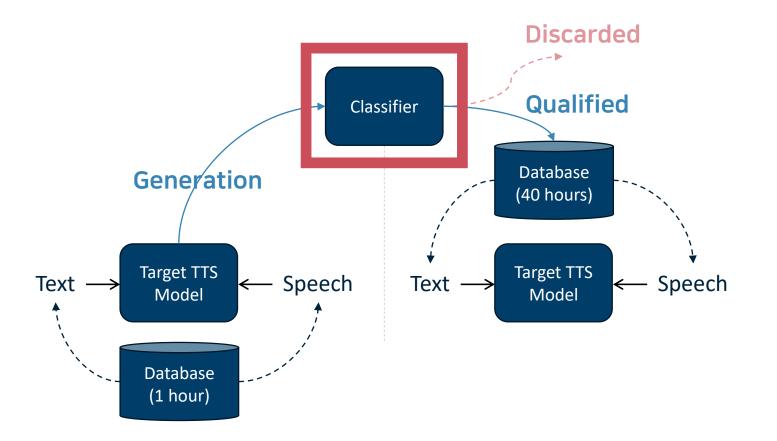
"제가 당신의 위로가 되고 싶어요. 기분 쳐지지 말고 파이팅 하세요."



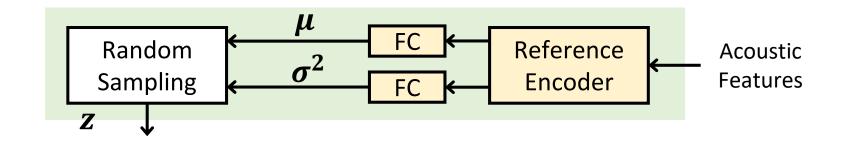
Duration informed Tacotron 2 with variational autoencoder (VAE)

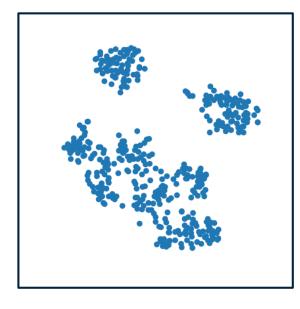


It is crucial to design a well-structured TTS model to synthesize high-quality speech database

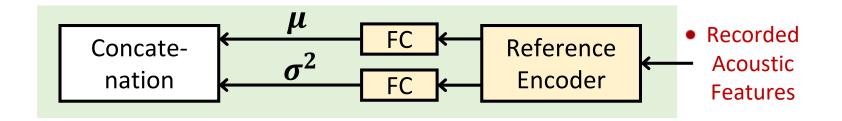


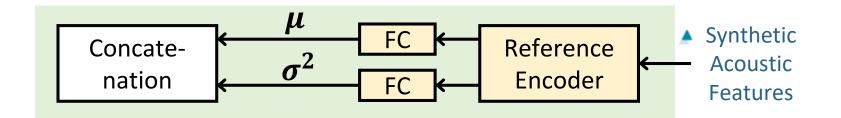
Compare and score similarities between synthetic and recorded samples

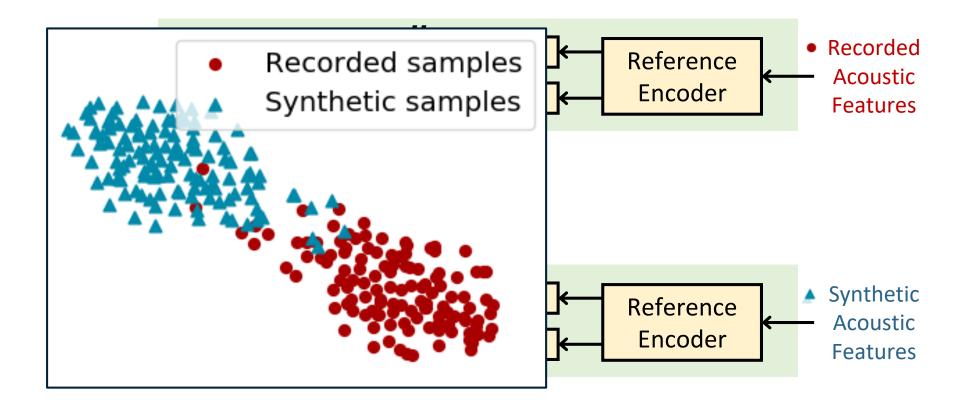




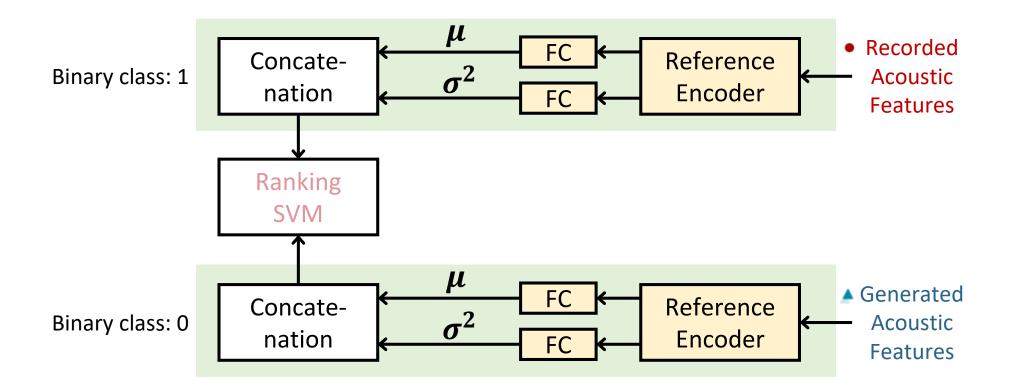
- **z** Latent vector ~ $N(\mu, \sigma^2)$ Variations to output







VAE can be a good feature representation between synthetic and recorded samples

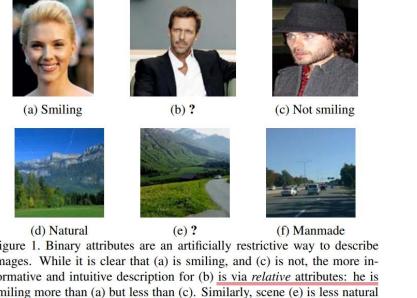


Score relative attributes between binary classes

Relative Attributes

Devi Parikh Toyota Technological Institute Chicago (TTIC) dparikh@ttic.edu

Kristen Grauman University of Texas at Austin grauman@cs.utexas.edu



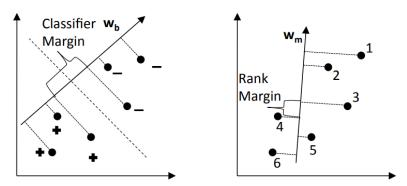


Figure 2. Distinction between learning a wide-margin ranking function (right) that enforces the desired ordering on training points (1-6), and a wide-margin binary classifier (left) that only separates the two classes (+ and -), and does not necessarily preserve a desired ordering on the points.

Figure 1. Binary attributes are an artificially restrictive way to describe images. While it is clear that (a) is smiling, and (c) is not, the more informative and intuitive description for (b) is via *relative* attributes: he is smiling more than (a) but less than (c). Similarly, scene (e) is less natural than (d), but more so than (f). Our main idea is to model relative attributes via learned ranking functions, and then demonstrate their impact on novel forms of zero-shot learning and generating image descriptions.

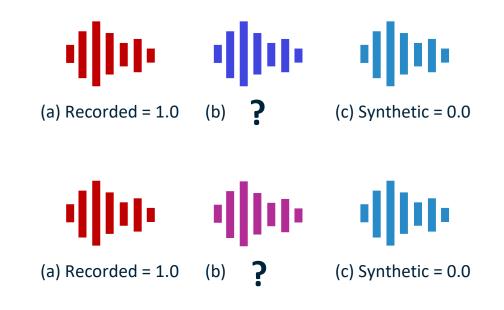
Score relative attributes between binary classes

Relative Attributes

Devi Parikh Toyota Technological Institute Chicago (TTIC) dparikh@ttic.edu Kristen Grauman University of Texas at Austin grauman@cs.utexas.edu

(a) Smiling

(d) Natural (e) ? (f) Manmade Figure 1. Binary attributes are an artificially restrictive way to describe images. While it is clear that (a) is smiling, and (c) is not, the more informative and intuitive description for (b) is via *relative* attributes: he is smiling more than (a) but less than (c). Similarly, scene (e) is less natural than (d), but more so than (f). Our main idea is to model relative attributes via learned ranking functions, and then demonstrate their impact on novel forms of zero-shot learning and generating image descriptions.



Score relative attributes between binary classes

Relative Attributes

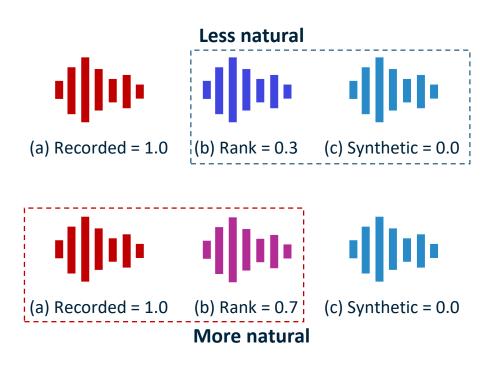
Devi Parikh Toyota Technological Institute Chicago (TTIC) dparikh@ttic.edu

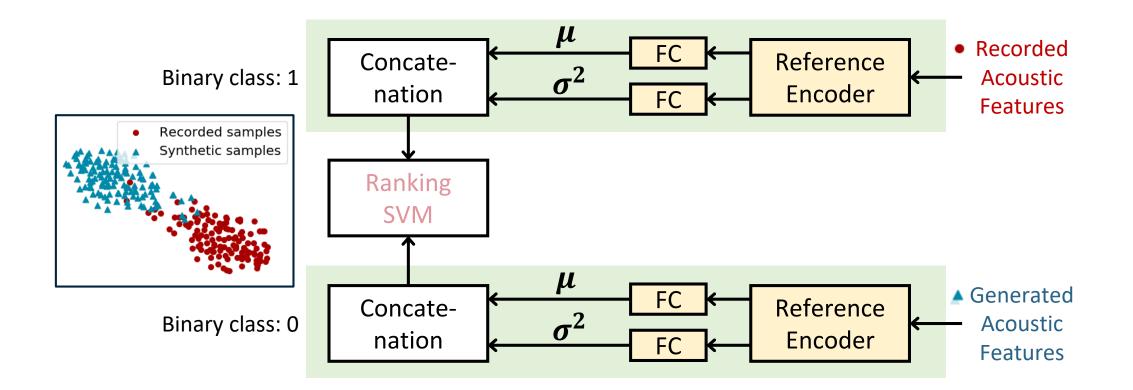
Kristen Grauman University of Texas at Austin grauman@cs.utexas.edu

(a) Smiling

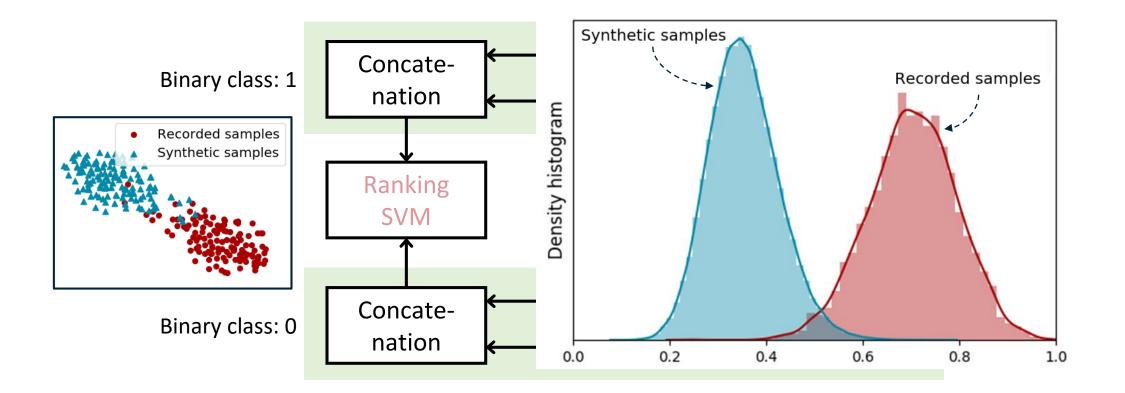
(c) Not smiling

(e)? (d) Natural (f) Manmade Figure 1. Binary attributes are an artificially restrictive way to describe images. While it is clear that (a) is smiling, and (c) is not, the more informative and intuitive description for (b) is via *relative* attributes: he is smiling more than (a) but less than (c). Similarly, scene (e) is less natural than (d), but more so than (f). Our main idea is to model relative attributes via learned ranking functions, and then demonstrate their impact on novel forms of zero-shot learning and generating image descriptions.

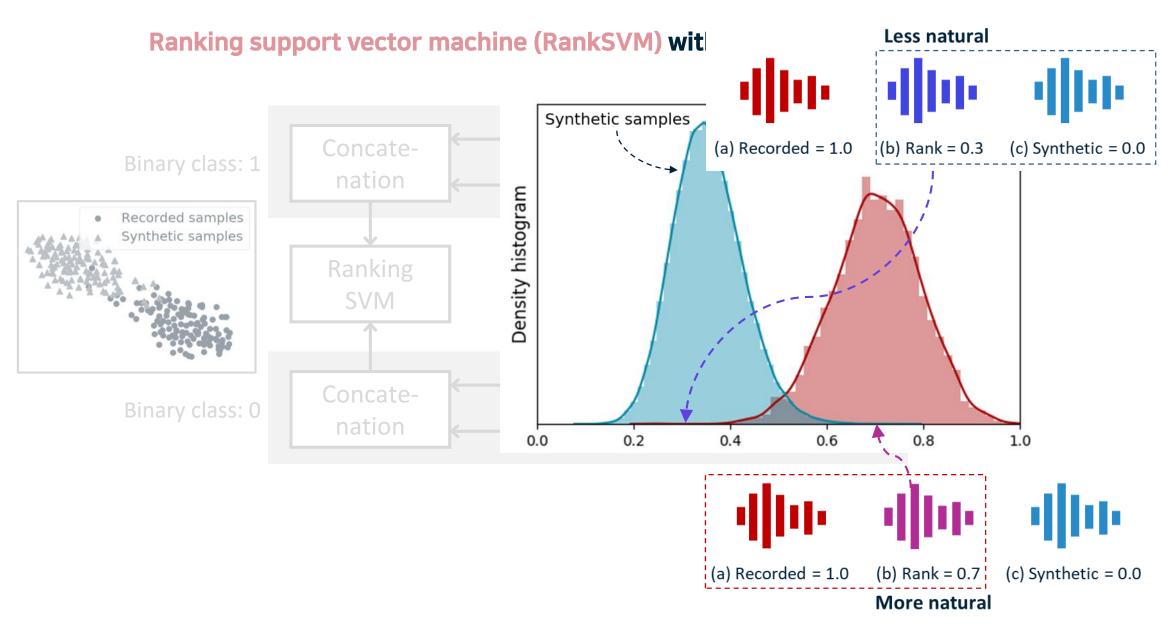


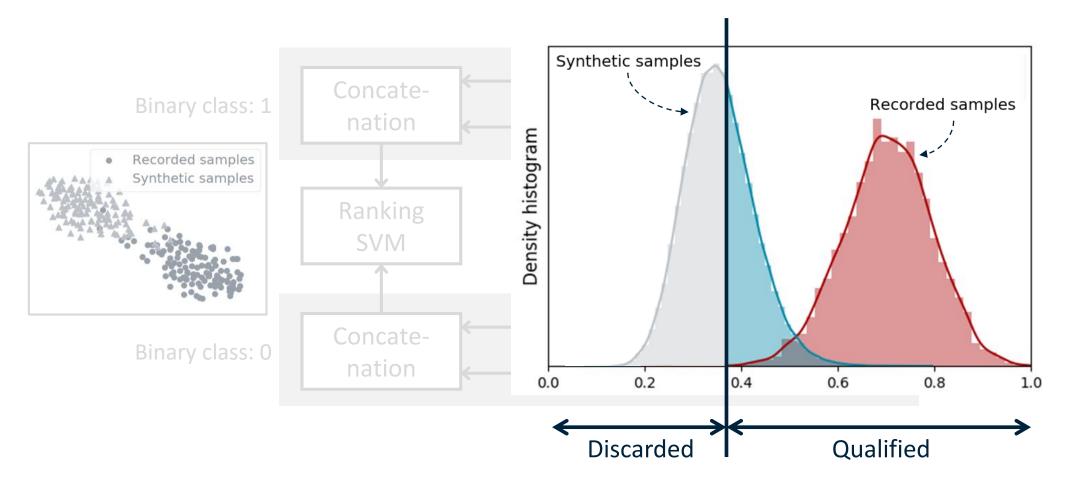


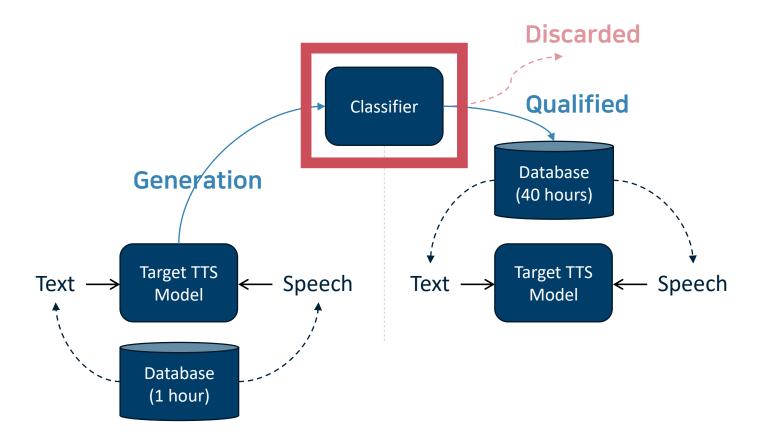
Classifier



Classifier

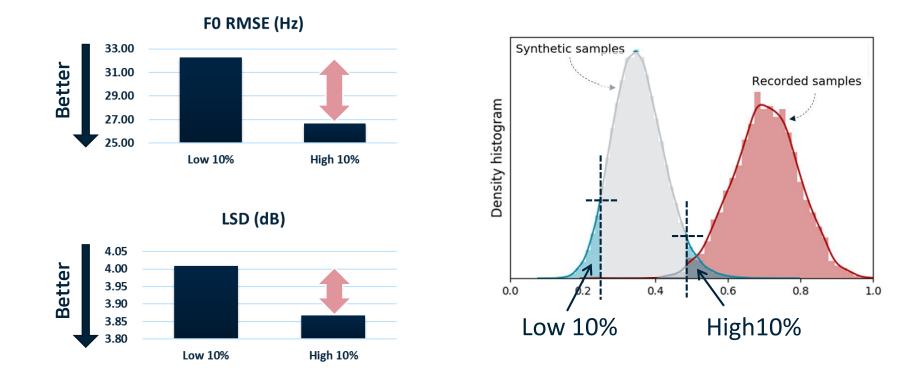






Questions

1: Ranking score vs Speech quality ?2: How to determine decision criteria ?



- 1. Ranking score vs Speech quality
- 2. How to determine decision criteria

Ranking support vector machine (RankSVM) with VAE's posterior distribution

LSD (dB)

High 10%

Low 10%

4.05

4.00

3.95

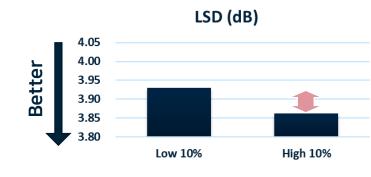
3.90

3.85 3.80

Better

VAE features

OpenSMILE features

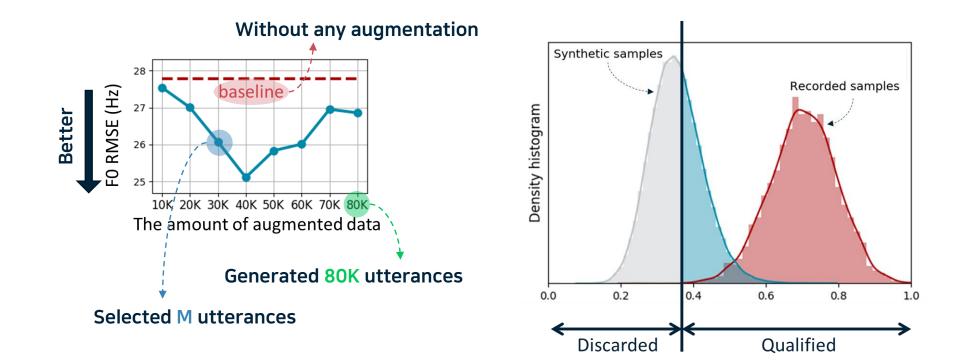


openSMILE – The Munich Versatile and Fast Open-Source Audio Feature Extractor

1. Ranking score vs Speech quality

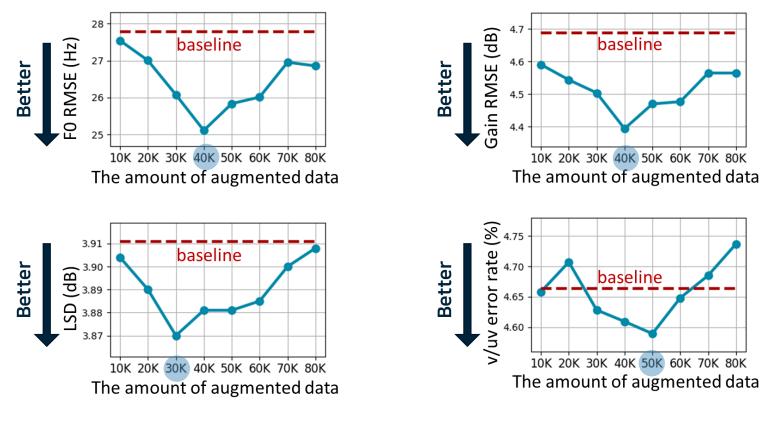
2. How to determine decision criteria

Florian Eyben	Martin Wöllmer	Björn Schuller
Institute for Human-Machine	Institute for Human-Machine	Institute for Human-Machine
Communication	Communication	Communication
Technische Universität	Technische Universität	Technische Universität
München	München	München
80290 München, Germany	80290 München, Germany	80290 München, Germany
eyben@tum.de	woellmer@tum.de	schuller@tum.de



- 1. Ranking score vs Speech quality
- 2. How to determine decision criteria

Ranking support vector machine (RankSVM) with VAE's posterior distribution



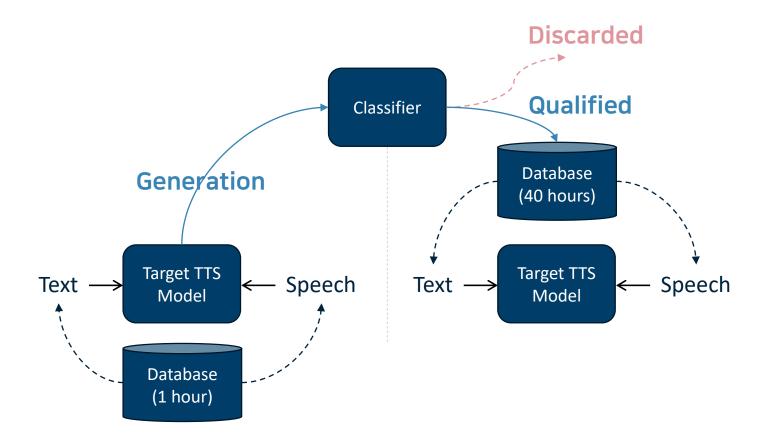
1. Ranking score vs Speech quality

2. How to determine decision criteria \rightarrow 40K would be the best

Data-selective TTS augmentation

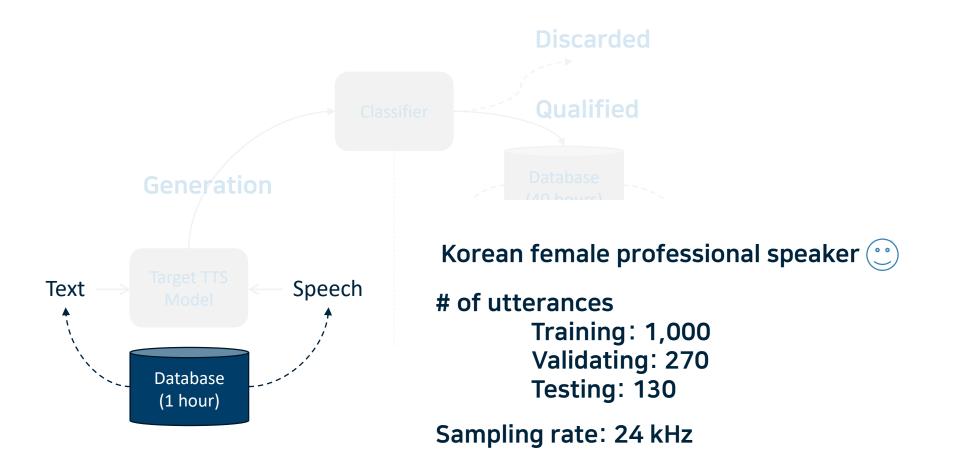
Evaluations

Experiment

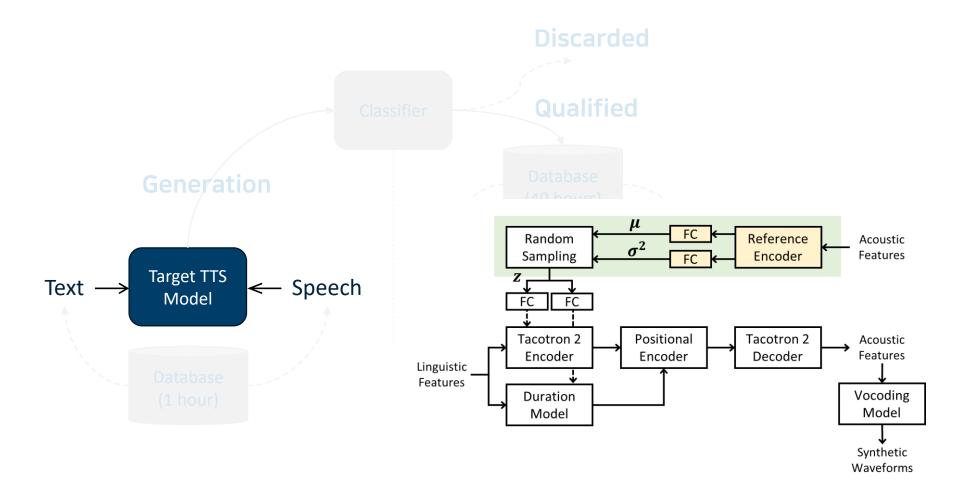


Experiment

Database

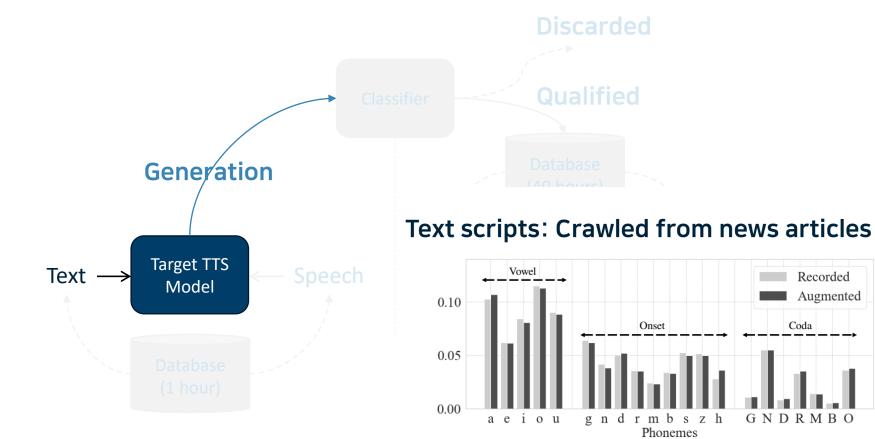


TTS model: Duration informed Tacotron2 with VAE



Experiment

TTS-based data augmentation



2020 Engineering day: 가짜 목소리 DB로 고품질 음성합성기를 만들어보자 (HDTS 황민제님)

Recorded

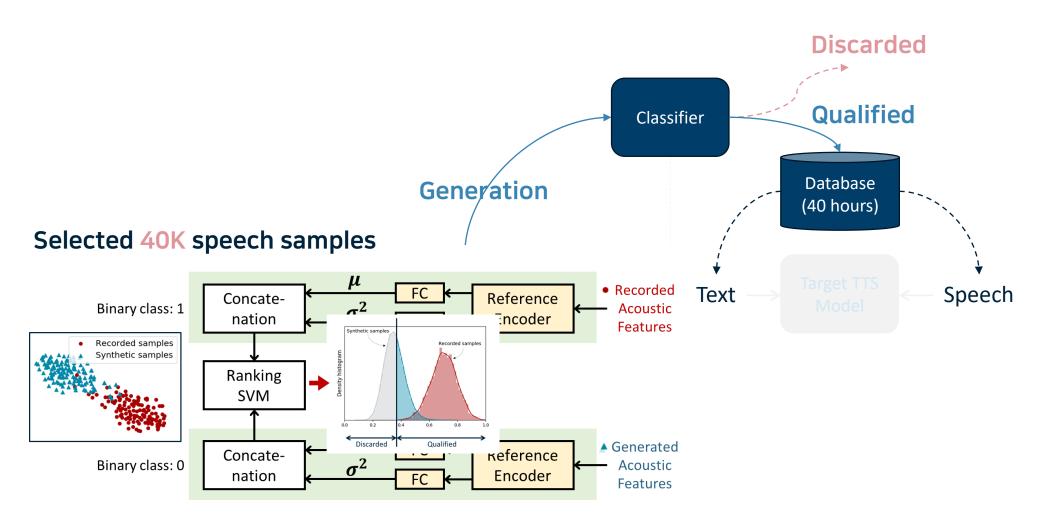
Coda

GNDRMBO

Augmented

Generated 80K speech samples

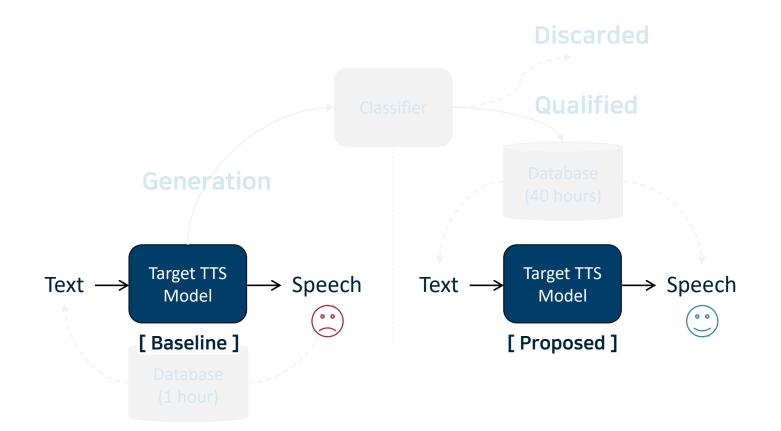
RankSVM-based data selection



TTS retraining with large-scale synthetic corpora

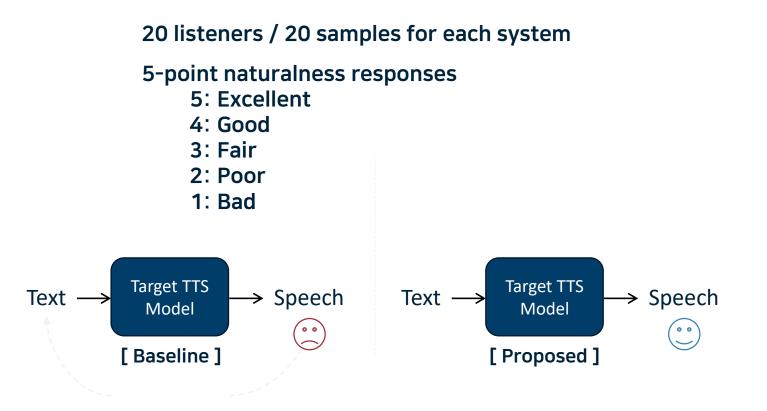


Subjective mean opinion score (MOS) tests



"찜나라는 아구나라와 풍년해물탕 아귀찜나라 못난이 아구나라 등이 있네요. 자세한 결과는 네이버 클로바 앱에서 확인하세요."

Subjective mean opinion score (MOS) tests

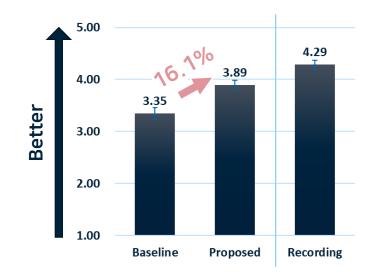


Subjective mean opinion score (MOS) tests

20 listeners / 20 samples for each system

5-point naturalness responses

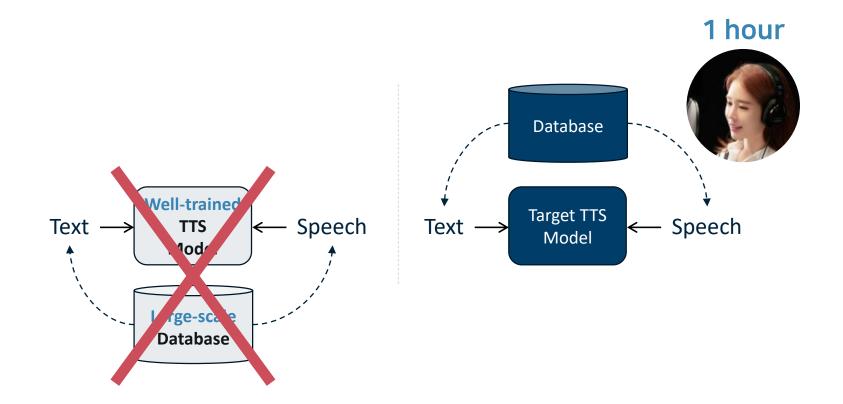
- 5: Excellent
- 4: Good
- 3: Fair
- 2: Poor
- 1: Bad



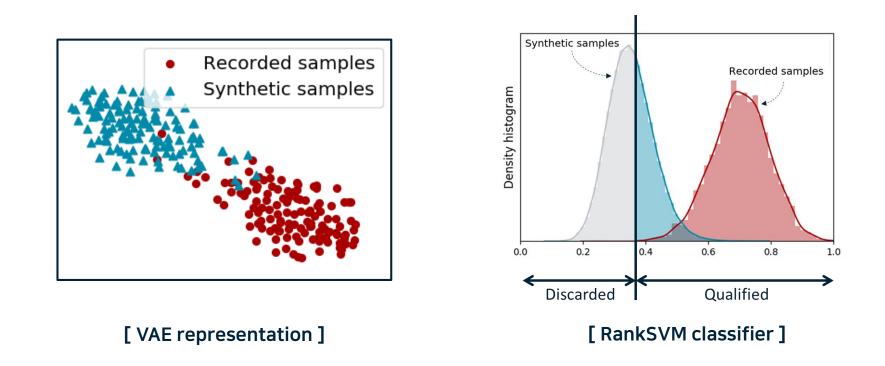
Data-selective TTS augmentation

Summary

How to design TTS model with limited amount of training data?

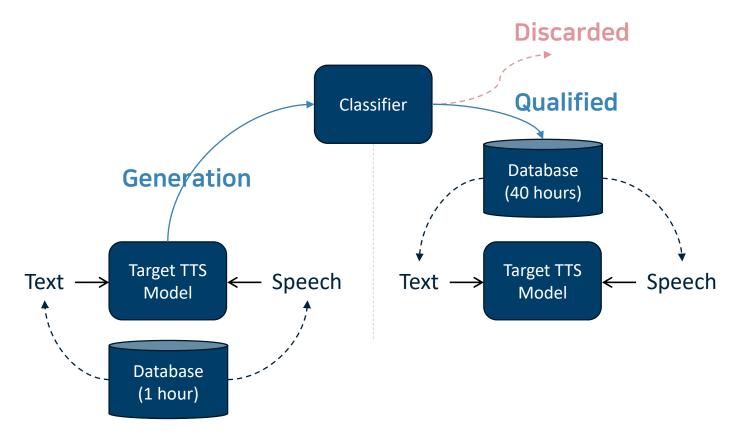


Ranking support vector machine (RankSVM) with VAE's posterior distribution



We proposed a TTS-driven data-selective augmentation technique. From the large-scale synthetic corpora, a RankSVM with VAE's posterior distribution determined the originality that represents how the acoustic characteristics of the generated speech was similar to those of the natural recordings. By selectively including the synthetic data with the recorded one, the performance of the retrained TTS system has been improved significantly

Ranking support vector machine (RankSVM) with VAE's posterior distribution



We proposed a TTS-driven data-selective augmentation technique. From the large-scale synthetic corpora, a RankSVM with VAE's posterior distribution determined the originality that represents how the acoustic characteristics of the generated speech was similar to those of the natural recordings. By **selectively** including the synthetic data with the recorded one, the performance of the retrained TTS system has been improved significantly

Thanks! End of Documents.