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PARALLEL WAVEGAN: A FAST WAVEFORM GENERATION MODEL BASED ON
GENERATIVE ADVERSARIAL NETWORKS WITH MULTI-RESOLUTION SPECTROGRAM

Ryuichi Yamamoto', Eunwoo Song® and Jae-Min Kim?

'LINE Corp., Tokyo, Japan.
NAVER Corp., Seongnam, Korea

ABSTRACT

We propose Parallel WaveGAN, a distillation-free, fast, and small-
footprint waveform generation method using a generative adver-
sarial network. In the proposed method, a non-autoregressive
WaveNet is trained by jointly optimizing multi-resolution spectro-
gram and adversarial loss functions, which can effectively capture
the time-frequency distribution of the realistic speech waveform.
As our method does not require density distillation used in the
conventional teacher-student framework, the entire model can be
easily trained. Furthermore, our model 1s able to generate high-
fidelity speech even with its compact architecture. In particular,
the proposed Parallel WaveGAN has only 1.44 M parameters and
can generate 24 kHz speech waveform 28.68 times faster than real-
time on a single GPU environment. Perceptual listening test results
verify that our proposed method achieves 4.16 mean opinion score
within a Transformer-based text-to-speech framework, which is
comparative to the best distillation-based Parallel WaveNet sys-
tem.



Parallel waveform synthesis

Vocoding models: Overview



Vocoding models: Overview

Estimating speech signals from acoustic parameters
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Acoustic parameters..?

Representing speech characteristics
such as FO, spectrum, v/uv ...
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Estimating speech signals from acoustic parameters
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WaveRNN based on the RNN model
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N. Kalchbrenner, et al., “Efficient neural audio synthesis,” arXiv:1802.08435, 2018.
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Estimating speech signals from acoustic parameters
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What is the main model?

WaveGlow based on the Flow model
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R. Prenger, et al., "WaveGlow: A flow-based generative network for speech synthesis." in Proc. ICASSP, 2019.
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What is the main model?

WaveNet based on the CNN model
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A. Van Den Oord, et al., “WaveNet: A generative model for raw audio,” CoRR abs/1609.03499, 2016.
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WaveNet based on the CNN model

Estimating the current sample from the previous samples
We define this method as autoregressive vocoding model

A. Van Den Oord, et al., “WaveNet: A generative model for raw audio,” CoRR abs/1609.03499, 2016.
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Estimating speech signals from acoustic parameters
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What is the main model?

WaveNet based on the CNN model

Estimating the current sample from the previous samples
We define this method as autoregressive vocoding model

WaveNet generates high-quality synthetic speech
However, it takes about 5 minutes to generate 1 sec audio

A. Van Den Oord, et al., “WaveNet: A generative model for raw audio,” CoRR abs/1609.03499, 2016.
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Estimating speech signals from acoustic parameters
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One of the alternative method to address WaveNet’s slow inference speed is
the non-autoregressive Parallel WaveNet

A.van den Oord, et al., “Parallel WaveNet: Fast high-fidelity speech synthesis,” in Proc. ICML, 2018.
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Non-autoregressive Parallel WaveNet (=student) is trained to learn
the distribution of the autoregressive WaveNet (=teachure)

A.van den Oord, et al., “Parallel WaveNet: Fast high-fidelity speech synthesis,” in Proc. ICML, 2018.
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Estimating speech signals from acoustic parameters
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Non-autoregressive Parallel WaveNet doesn’t require the previous samples
Its inference speed in unlimited
(it takes about 0.02 sec to generate 1 sec audio)

A.van den Oord, et al., “Parallel WaveNet: Fast high-fidelity speech synthesis,” in Proc. ICML, 2018.
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Estimating speech signals from acoustic parameters
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There remain problems in the difficult training method...

A.van den Oord, et al., “Parallel WaveNet: Fast high-fidelity speech synthesis,” in Proc. ICML, 2018.
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ABSTRACT

We propose Parallel WaveGAN, a distillation-free, fast, and small-
footprint waveform generation method using a generative adver-
sarial network. In the proposed method, a non-autoregressive
WaveNet is trained by jointly optimizing multi-resolution spectro-
gram and adversarial loss functions, which can effectively capture
the time-frequency distribution of the realistic speech waveform.
As our method does not require density distillation used in the
conventional teacher-student framework, the entire model can be
easily trained. Furthermore, our model 1s able to generate high-
fidelity speech even with its compact architecture. In particular,
the proposed Parallel WaveGAN has only 1.44 M parameters and
can generate 24 kHz speech waveform 28.68 times faster than real-
time on a single GPU environment. Perceptual listening test results
verify that our proposed method achieves 4.16 mean opinion score
within a Transformer-based text-to-speech framework, which is
comparative to the best distillation-based Parallel WaveNet sys-
tem.
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1. Removed the teacher-student distillation process
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R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.
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1. Removed the teacher-student distillation process

- Entire model can be “easily” trained
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R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.
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1. Removed the teacher-student distillation process
Improved synthetic quality by using the adversarial training method
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R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.
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1. Removed the teacher-student distillation process

Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss

N

N

7
Generated Samples < Real Samples
000000000000 O 0 ;= g(z]zes)

f ! ! |

M

1 m
L'mr_stft (G) = ﬁ Z Lgtft}(G)

m=1

WaveNet Student |

Lt (@) = Ezmp, @~paoca [Loc(@, @) + Lmag(, )]

| ! ! f t ]‘ IDPut NC L (x,2) = \/th( Xi gl — |Xt__f|)9

L= o T s = e - - {IZi.thfP

g og|Xe g — log|Xe |
N T-N

Lma.g(xs i')

R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.
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1. Removed the teacher-student distillation process
Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss

N

N

7
Generated Samples < Real Samples
000000000000 O 0 ;= g(z]zes)

f ! ! |

. M
WaveNet Student Lonesiic(G) = i ST L@

Lan(G) =" & %3

K r T r toptNe () - —

L= o T s = e - -

2 g wglag | — logXe |

Lma.g(agsi) T K N
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1. Removed the teacher-student distillation process
2. Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss

@ ® STFT (short-time Fourier transform)?

Time-frequency representation of speech signal
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R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.

ICASSP, 2020, pp. 6194-6198.



Vocoding models: Parallel WaveGAN

1. Removed the teacher-student distillation process
2. Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss

STFT is calculated in different T/F resolutions

FFT size / window size / shift
512 / 240 / 50 1024 / 600 / 120 2048 / 1200 / 240

)1 J—

25
10000 00
-25
-5.0

-15

-10.0

-125

-15.0

Time

Higher temporal resolution Balanced Higher frequency resolution

Time

R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.
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1. Removed the teacher-student distillation process
Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss
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1. Removed the teacher-student distillation process
2. Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss

STFT is calculated in different T/F resolutions
There are two loss functions

One penalizes large energy components

|ISTET(x)| — [STFT(R)||

‘JDCO‘WW?W
' i 3 & i T :
10000 4 ‘ : : ;“, $ _:% o
-1 IS bl B A )’
& geq |- T (X = K

i E e T FE Lee(w,@) = -
aoo0 1000 5 F; i :'o. ;,’,'; ! - Zif Xt-f|u
2000 ’ ! % $ \ ! =10

£+ SR SR NS | "

S e e s |

0 0s 1 15 —a

Real Spectrogram SC penalizes large amplitude components

R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.
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1. Removed the teacher-student distillation process

2. Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss

STFT is calculated in different T/F resolutions
There are two loss functions
One penalizes large energy components

The other penalizes small energy components
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R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.
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2. Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss

STFT is calculated in different T/F resolutions
There are two loss functions
One penalizes large energy components

The other penalizes small energy components
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Training method
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R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
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Training method

Parameter STFT loss
update (1st) . . .
v Table 1: The details of the multi-resolution STFT loss. A
Random noise ¢ Hanning window was applied before the FFT process.
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R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.
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ABSTRACT

We propose Parallel WaveGAN, a distillation-free, fast, and small-
footprint waveform generation method using a generative adver-
sarial network. In the proposed method, a non-autoregressive
WaveNet is trained by jointly optimizing multi-resolution spectro-
gram and adversarial loss functions, which can effectively capture
the time-frequency distribution of the realistic speech waveform.
As our method does not require density distillation used in the
conventional teacher-student framework, the entire model can be
easily trained. Furthermore, our model 1s able to generate high-
fidelity speech even with its compact architecture. In particular,
the proposed Parallel WaveGAN has only 1.44 M parameters and
can generate 24 kHz speech waveform 28.68 times faster than real-
time on a single GPU environment. Perceptual listening test results
verify that our proposed method achieves 4.16 mean opinion score
within a Transformer-based text-to-speech framework, which is
comparative to the best distillation-based Parallel WaveNet sys-
tem.
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Evaluation results

Table 2: The inference speed and the MOS results with 95% confidence intervals: Acoustic features extracted from the recorded
speech signal were used to compose the input auxiliary features. The evaluation was conducted on a server with a single
NVIDIA Tesla V100 GPU. Note that the inference speed k means that the system was able to generate waveforms k times
faster than real-time.

System KLD-based STFT Adversarial Number of Model Inference

index Model distillation loss loss layers size speed MOS
System | WaveNet - - - 24 381M  032x10-2  3.61+0.12
System 2 ClariNet Yes LY - 60 278 M 1462 3.88+0.11
System 3 ClariNet Yes LY+ 1 4+ LY - 60 278M 1462 4.21+0.09
System 4 ClariNet Yes LY+ 1?4 ¥ Yes 60 278M 1462 4.2140.09
System 5 Parallel WaveGAN - L Yes 30 144M 2868  1.36+0.07
System 6  Parallel WaveGAN - JASURY ACNEY IS Yes 30 144M 2868  4.06+0.10
System 7 Recording - - - - - - 4.4640.08

Table 3: Training time comparison: All the experiments were ~ Table 4: MOS results with 95% confidence intervals: Acous-
conducted on a server with two NVIDIA Tesla V100 GPUs.  tic features generated from the Transformer TTS model were
Each vocoder model corresponds to System 1, 3, 4, and 6  used to compose the input auxiliary features.

described in Table 2, respectively. Note that the times for

ClariNets include the training time for the teacher WaveNet. Model MOS
Transformer + WaveNet 3.3340.11
Model Training time (days) Transformer + ClariNet 4.00+0.10
WaveNet 74 Transformer + ClariNet-GAN 4.1440.10
ClariNet 127 Transformer + Parallel WaveGAN (ours) 4.16+0.09
ClariNet-GAN 13.5 Recording 4.46+0.08

Parallel WaveGAN (ours) 2.8

R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.
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Each vocoder model corresponds to System 1, 3, 4, and 6  used to compose the input auxiliary features.

described in Table 2, respectively. Note that the times for

ClariNets include the training time for the teacher WaveNet. Model MOS
Transformer + WaveNet 3.3340.11
Model Training time (days) Transformer + ClariNet 4.00+0.10
WaveNet 74 Transformer + ClariNet-GAN 4.1440.10
ClariNet 127 Transformer + Parallel WaveGAN (Burs 4.16+0.09
ClariNet-GAN 13.5 Recording 4.46+0.08
Parallel WaveGAN (ours) 2.8

R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.



Vocoding models: Parallel WaveGAN

Demo samples Open source
~ (implemented by Tomoki Hayashi, Nagoya Univ.)

R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.
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Parallel WaveGAN: Toward high-quality synthesis



Toward high-quality synthesis

IMPROVED PARALLEL WAVEGAN VOCODER WITH PERCEPTUALLY WEIGHTED
SPECTROGRAM LOSS

Eunwoo Songl, Ryuichi Yamamoto?, Min-Jae Hwangg, Jin-Seob Kim", Ohsung Kwon', Jae-Min Kim!

INAVER Corp., Seongnam, Korea
2LINE Corp., Tokyo, Japan
3Search Solutions Inc., Seongnam, Korea

ABSTRACT

This paper proposes a spectral-domain perceptual weighting

technique for Parallel WaveGAN-based text-to-speech (TTS)

systems. The recently proposed Parallel WaveGAN vocoder

successfully generates waveform sequences using a fast

non-autoregressive WaveNet model. By employing multi-

resolution short-time Fourier transform (MR-STFT) criteria

with a generative adversarial network, the light-weight con-

volutional networks can be effectively trained without any

distillation process. To further improve the vocoding perfor-

mance, we propose the application of frequency-dependent , . ”
weighting to the MR-STFT loss function. The proposed Welghted SpeCtraI Loss
method penalizes perceptually-sensitive errors in the fre-

quency domain; thus, the model is optimized toward reducing

auditory noise in the synthesized speech. Subjective listening

test results demonstrate that our proposed method achieves

4.21 and 4.26 TTS mean opinion scores for female and male

Korean speakers, respectively.




Toward high-quality synthesis

PARALLEL WAVEFORM SYNTHESIS BASED ON GENERATIVE ADVERSARIAL
NETWORKS WITH VOICING-AWARE CONDITIONAL DISCRIMINATORS

Ryuichi Yamamoto', Eunwoo Song?, Min-Jae Hwang® and Jae-Min Kim?

'LINE Corp., Tokyo, Japan
2NAVER Corp., Seongnam, Korea
3Search Solutions Inc., Seongnam, Korea

ABSTRACT

This paper proposes voicing-aware conditional discriminators for

Parallel WaveGAN-based waveform synthesis systems. In this

framework, we adopt a projection-based conditioning method

that can significantly improve the discriminator’s performance.

Furthermore, the conventional discriminator is separated into =~ . . o )
two waveform discriminators for modeling voiced and unvoiced VO|C|ng'awa re discriminators
speech. As each discriminator learns the distinctive character-

istics of the harmonic and noise components, respectively, the

adversarial training process becomes more efficient, allowing the

generator to produce more realistic speech waveforms. Subjective

test results demonstrate the superiority of the proposed method

over the conventional Parallel WaveGAN and WaveNet systems.

In particular, our speaker-independently trained model within a

FastSpeech 2 based text-to-speech framework achieves the mean

opinion scores of 4.20, 4.18, 4.21, and 4.31 for four Japanese

speakers, respectively.




Toward high-quality synthesis

High-fidelity Parallel WaveGAN with Multi-band Harmonic-plus-Noise Model

Min-Jae Hwang'*, Ryuichi Yamamoto®*, Eunwoo Song® and Jae-Min Kim?

Search Solutions Inc., Seongnam, Korea
?LINE Corp.,Tokyo, Japan
SNAVER Corp., Seongnam, Korea

Abstract

This paper proposes a multi-band harmonic-plus-noise (HN)
Parallel WaveGAN (PWG) vocoder. To generate a high-
fidelity speech signal, it is important to well-reflect the
harmonic-noise characteristics of the speech waveform in the
time-frequency domain. However, it is difficult for the con-
ventional PWG model to accurately match this condition,
as its single generator inefficiently represents the compli-
cated nature of harmonic-noise structures. In the proposed
method, the HN WaveNet models are employed to overcome
this limitation, which enable the separate generation of the ”Harmonic/noise generators"
harmonic and noise components of speech signals from the
pitch-dependent sine wave and Gaussian noise sources, re-
spectively. Then, the energy ratios between harmonic and
noise components in multiple frequency bands (i.e., subband
harmonicities) are predicted by an additional harmonicity es-
timator. Weighted by the estimated harmonicities, the gain
of harmonic and noise components in each subband is ad-
justed, and finally mixed together to compose the full-band
speech signal. Subjective evaluation results showed that the
proposed method significantly improved the perceptual qual-
ity of the synthesized speech.




Parallel waveform synthesis

Toward high-quality synthesis: Speech fundamentals



Speech fundamentals

Speech waveform
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Speech fundamentals
Pitch period
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Speech fundamentals

Formant frequency
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How do we produce speech?

Speech production model

* Lung
e Power supply

* Vocal source
* Voiced sound :quasi-periodic
* Unvoiced sound : noisy

* Vocal tract filter
* Shaping voice color

=

https://www.youtube.com/watch?v=X JvfZiGEek

Source —> | Filter | —> Speech



https://www.youtube.com/watch?v=X_JvfZiGEek

How do we produce speech?

Speech production model
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; I nTlM_Aj\I\ ATZ ﬂ\,ﬁ.vm-
YUASRTA AL it

10 15 20
Time (ms)

N o N
T x
§>- :
k-
=

Amplitude

* Lung

e Power supply
e Vocal source
* Voiced sound :quasi-periodic
* Unvoiced sound : noisy

* Vocal tract filter

* Shaping voice color
0) Veicad sound —> Vikrokm of

eal
A)Onv«'u& swnd wz.pu:::;c 0%:»

https://www.youtube.com/watch?v=X JvfZiGEek

Source —> | Filter

—> Speech



https://www.youtube.com/watch?v=X_JvfZiGEek

How do we produce speech?

Speech production model

* Lung
e Power supply

* \ocal source
* \oiced sound
e Unvoiced sound

e Vocal tract filter

a) Vsicad seund —> Vi&rak:r o
A)Unwiwl seund W)-Pui:::c excilabe

: quasi-periodic
: hoisy

* Shaping voice color

Source —> | Filter

https://www.youtube.com/watch?v=X JvfZiGEek

—> Speech
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How do we produce speech?

Speech production model
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* Linear prediction

Weighted sum. of previous samples.
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Prediction error

Time-domain
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: quasi-periodic

* Unvoiced sound : noisy

* Vocal tract filter
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https://www.youtube.com/watch?v=X_JvfZiGEek

How do we produce speech?

Speech production model

e
/7,
Av

fl= '

* Linear prediction

*  Weighted sum. of previous samples.

$(n) = Tpo alk)s(n — k)

* Prediction error

* Frequency-domain
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LPC filter ||r ‘

* Lung

e Power supply

* \ocal source

e Voiced sound

: quasi-periodic

* Unvoiced sound : noisy

* Vocal tract filter
* Shaping voice color
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Filter

—> Speech
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How do we produce speech?

Speech production model

201og|E(2z)| ° Lung

e Power supply

* \ocal source
* \oiced sound

e Unvoiced sound

* Vocal tract filter

: quasi-periodic
: hoisy

* Shaping voice color

Source —> | Filter

Freq. (kHz)

—> Speech




How do we produce speech?

Speech production model
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e Power supply

* Vocal source
* Voiced sound :quasi-periodic

* Unvoiced sound : noisy

* Vocal tract filter
* Shaping voice color

Source —> | Filter | —> Speech

Freq. (kHz)



How do we produce speech?

Speech production model
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* Unvoiced sound : noisy

Vocal tract filter
* Shaping voice color

Source —> | Filter | —> Speech




How do we produce speech?

Speech production model
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How do we produce speech?

Parametric LPC vocoder
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Gaussian noise
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Parallel waveform synthesis

Toward high-quality synthesis: Perceptually weighted spectral loss



Perceptually weighted spectral loss

Combining LPC synthesis filter with neural excitation vocoders

Acoustic Neural Excitation

Parameters Vocoder Signals

oot

Speech production model

Vocal source = Excitation

Voiced sound: quasi-periodic
Unvoiced sound: aperiodic

Vocal tract - LPC synthesis
Shaping voice color

-

https://www.youtube.com/watch?v=X_JvfZiGEek

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.


https://www.youtube.com/watch?v=X_JvfZiGEek

Perceptually weighted spectral loss

Combining LPC synthesis filter with neural excitation vocoders

Acoustic Neural Excitation
Parameters Vocoder Signals

WaveNet + LPC filter = ExcitNet, LP-WaveNet, ...

vt

WaveRNN + LPC filter = LPCNet

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.



Perceptually weighted spectral loss

Combining LPC synthesis filter with neural excitation vocoders

Acoustic
Parameters

Neural Excitation
Vocoder Signals

WaveNet + LPC filter = ExcitNet, LP-WaveNet, ...

WaveRNN + LPC filter = LPCNet

WaveGlow + LPC filter =?

Parallel WaveGAN + LPC filter =7?

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.



Perceptually weighted spectral loss

Combining LPC synthesis filter with neural excitation vocoders

Acoustic Neural Excitation

Parameters Vocoder Signals

oot

Autoregressive models

WaveNet + LPC filter = ExcitNet, LP-WaveNet, ...

WaveRNN + LPC filter = LPCNet

WaveGlow + LPC filter =?

Parallel WaveGAN + LPC filter =7?

Non-autoregressive models

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.



Perceptually weighted spectral loss

Combining LPC synthesis filter with neural excitation vocoders

Acoustic Neural Excitation

Parameters Vocoder Signals

oot

Autoregressive models

WaveNet + LPC filter = ExcitNet, LP-WaveNet, ...

WaveRNN + LPC filter = LPCNet

WaveGlow + LPC filter =?

Parallel WaveGAN + LPC filter =7?

Non-autoregressive models

- Not suitable for estimating excitation signals

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.



Recall: Parallel WaveGAN

1. Removed the teacher-student distillation process
2. Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss

STFT is calculated in different T/F resolutions
There are two loss functions
One penalizes large energy components
The other penalizes small energy components

M

|ISTFT(x)| — ISTFT(2)|| [ 10g|STFT(x)| — log [STFT(R)]| Loean(©) = = 3° 109

.......... stft

M m=1

, s Lot (G) = Eamp, w~paare [Lsc(®, &) + Linag(@, )]
¥ Yo (1XKag| = [Xes)?

o 2 L’sc ('T: i‘) = \/ o

2000 1 '\a Zl‘f Xt-f|g

: o - - I L Do g log| Xy ¢ flog|}hi¢,f |
SC penalizes large amplitude components  Log STFT loss penalizes small amplitude components ~ Lmaz(%: ) = T N

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.



Perceptually weighted spectral loss

1. Removed the teacher-student distillation process

2. Improved synthetic quality by using the adversarial training method

3. Further improved its quality by introducing the multi-resolution STFT loss
+ Applying perceptual weighting filter

ooy = VZesWer (X — s

> schily ) =
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E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.



Perceptually weighted spectral loss

1. Removed the teacher-student distillation process

2. Improved synthetic quality by using the adversarial training method

3. Further improved its quality by introducing the multi-resolution STFT loss
+ Applying perceptual weighting filter

This penalizes perceptually-sensitive errors in the freq. domain

Li(z.2) = w}{m = Xes)))?

NoND

log W, rllog| X —logji
L (m,i}:EL:H E( uw | Xe 5l 1 Xe.5 D)l
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E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.
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Fig. 2: Log-spectral distance (LSD; dB) between the original

Perceptually weighted spectral loss

+Conventic-ﬁal method
—+—Proposed method

150k

200k

250k 300k
Training steps

and generated speech signals

350k

400k

Evaluation results

Table 4: Naturalness MOS test results with 95% confidence
intervals for the TTS systems with respect to the different

vocoding models: The MOS results for the proposed system
are in bold font. The KRF and KRM denote Korean female

and male speakers, respectively.

Index Model KRF KRM

Test 1  WaveNet 3.641+0.14 3.60+0.13
Test2  WaveNet + NS 4.361+0.11 4.3240.10
Test 3  Parallel WaveGAN 4.02+0.10 4.11+0.11
Test4  Parallel WaveGAN + NS 2.3440.10 1.7240.09
Test 5 Parallel WaveGAN + PW  4.263+0.10 4.2110.10
Test6 Raw 4.641+0.07 4.59+0.09

Acoustic model: Tacotron 2
NS: Noise-shaping (similar to LPC synthesis)

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.



Perceptually weighted spectral loss

Evaluation results

Table 4: Naturalness MOS test results with 95% confidence
S0l |~>—Conventional method| | intervals for the TTS systems with respect to the different
: ——Proposed method .
vocoding models: The MOS results for the proposed system
are in bold font. The KRF and KRM denote Korean female
and male speakers, respectively.

LSD (dB)
-

Index Model KRF KRM

1.6

3.64+0.14 3.60+0.13

150K 200K 250K 300K 350K 400k s WaveNet + NS 4.36+0.11 4.3240.10

Training steps " . . '
Test4  Parallel WaveGAN + NS 2.34+0.10 1.72%0.09
Test 5 Parallel WaveGAN + PW  4.26:0.10 4.21:0.10
Test6 Raw 4.64+0.07 4.59+0.09

Fig. 2: Log-spectral distance (LSD; dB) between the original
and generated speech signals

Acoustic model: Tacotron 2
NS: Noise-shaping (similar to LPC synthesis)

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.



Perceptually weighted spectral loss

Evaluation results

——Conventional method
20r |—=*—Proposed method

LSD (dB)
-

1.6

150k 200k 250k 300k 350k 400k
Training steps

Fig. 2: Log-spectral distance (LSD; dB) between the original
and generated speech signals

Table 4: Naturalness MOS test results with 95% confidence
intervals for the TTS systems with respect to the different

vocoding models: The MOS results for the proposed system
are in bold font. The KRF and KRM denote Korean female

and male speakers, respectively.

Index Model KRF KRM
Test 1  WaveNet 3.644+0.14 3.60+0.13
o A WNE I A A1) /] (1 1(]
Test4  Parallel WaveGAN + NS 2.344+0.10 1.7240.09
es Farallel YwavelzAN + FW 4.200.1U 4. INLI
Test6 Raw 4.64+0.07 4.59+0.09

Acoustic model: Tacotron 2
NS: Noise-shaping (similar to LPC synthesis)

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.



Perceptually weighted spectral loss

Evaluation results

——Conventional method
20r |—=*—Proposed method

LSD (dB)
-

1.6

150k 200k 250k 300k 350k 400k
Training steps

Fig. 2: Log-spectral distance (LSD; dB) between the original
and generated speech signals

Table 4: Naturalness MOS test results with 95% confidence
intervals for the TTS systems with respect to the different

vocoding models: The MOS results for the proposed system
are in bold font. The KRF and KRM denote Korean female
and male speakers, respectively.

Index Model KRF KRM
Test 1 WaveNet 3.644+0.14 3.60+0.13

'

Parallel WaveGAN 4.024+0.10 4.114+0.11
Parallel WaveGAN + NS 2.34+0.10 1.72%0.09

A

Parallel WaveGAN + PW  4.26:0.10 4.21:0.10

Acoustic model: Tacotron 2
NS: Noise-shaping (similar to LPC synthesis)

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.



Perceptually weighted spectral loss

Demo samples

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.



Parallel waveform synthesis

Toward high-quality synthesis: Voicing-aware discriminators



Voicing-aware discriminators

Voiced/unvoiced sounds

i

Voiced sound: Quasi-periodic Unvoiced sound: aperiodic

pitsh

Vocal tract
impulse train \_V transfer function
'\f excitation 1 .
° e(n) 1= A(z) §(Il)
W/[}V Synthetic

: : ain output
(GGaussian noise g P
speech

Vocal source

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp.
6039-6043.



Voicing-aware discriminators

Voiced/unvoiced sounds

Voiced sound: Quasi-periodic Unvoiced sound: aperiodic

V: Characterized by slowly evolving harmonic components

Discriminator should cover long-term variations of voiced sound

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp.
6039-6043.



Voicing-aware discriminators

Voiced/unvoiced sounds

Voiced sound: Quasi-periodic Unvoiced sound: aperiodic

UV: Characterized by rapidly evolving noise components

Discriminator should catch short-term variations of unvoiced sound

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp.
6039-6043.



Voicing-aware discriminators

Voiced/unvoiced masking

Input AAMAAAANA " - Input AARARA i o
Waveform WPH‘I MNW W . Waveform M\/W\

i

D?: Voiced D"?: Unvoiced

Discriminator

D?: Voiced
Discriminator

Discriminator

l UV mask

(S ®<l m.

Output . Output e o o o

Conventional method | Voicing-aware discriminators

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp.
6039-6043.



Voicing-aware discriminators

Voiced/unvoiced masking

Input | Input Conditional
waveform ! waveform features
i ! 1 ) \ 4 i
Conv1x1 ' | Convixi Convix1 ||
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1-D CNN block ! : v v |
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Conventional method Voicing-aware discriminators

T. Miyato, et al., “cGANs with projection discriminator,” Proc. ICLR, 2018.

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp.
6039-6043.



Voicing-aware discriminators

Receptive field

Table 1. The dilation factors and receptive fields in the 1-D CNN
blocks of the voicing-aware discriminators.

Discriminator  Dilation factors  Receptive field

DY [1,2, 4,8, 16, 32] 127
Dw [1,1,1,1,1,1] 13

Voiced discriminator

Dilated convolution with long receptive field
Covering long-term variations of voiced sound

Unvoiced discriminator

Non-dilated convolution with short receptive field
Catching short-term variations of unvoiced sound

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp.
6039-6043.



Voicing-aware discriminators

Receptive field

Recording

Baseline Proposed

i 1

Table 1. The dilation f
blocks of the voicing-aw

Discriminator
D\"
Dl.l‘b"

w

Frequency (kHz)
=y

w

Voiced discriminator 2

Dilated convolutic

0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

Covering |Ong-ter . Time.(sec) . l Time (sec) ' ‘ Tlme.(sec)
(a) (b) (c)

Unvoiced discriminatc
) Fig. 2. Spectrograms of (a) natural speech, (b) generated speech
Non-dilated conwt from the conventional Parallel WaveGAN (S2), and (c) generated
Catching short-te| speech from the proposed Parallel WaveGAN (S7). As demonstrated
in rectangle areas, our proposed method is able to model spectral
harmonics more accurately.

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp.
6039-6043.



Voicing-aware discriminators

Evaluation results

Table 2. MOS test results with 95% confidence intervals in analysis/synthesis: The speech samples were generated using the acoustic
features extracted from the recorded speech. PWG denotes Parallel WaveGAN for short. Note that systems S2 and S3 used D" as the primary
discriminator. All the models were trained in a speaker-independent manner.

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp.

6039-6043.

System  Model Voiced Unvoiced Discriminator MOS
segments segments  conditioning F1 F2 MI M2
S1 WaveNet - - - 3.644+0.12 3.83+0.11 3.33+£0.12 3.13£0.11
S2 PWG - - - 3.61+0.11 3.55+0.11 3.57£0.12 3.61£0.11
S3 PWG-cGAN-D - - Yes 4.04+0.10 3.95+0.10 3.91£0.11 3.9740.10
S4 PWG-V/UV-D DY DY Yes 3.60+0.12 3.5940.11 3.34+0.11 3.48+0.11
S5 PWG-V/UV-D D™ DY Yes 3.67+£0.11 3.484+0.11 3.294+0.12 3.38+0.11
S6 PWG-V/UV-D D™ D" Yes 3.77+0.11  3.88+0.10 3.57+0.11 3.34+0.11
S7 PWG-V/UV-D (proposed) D" D™ Yes 4.11+0.10 4.05£0.10 4.04+0.10 4.084+0.10
R1 Recordings - - - 4.63+0.08 4.67+0.07 4.614+0.08 4.6440.08

Table 3. MOS test results with 95% confidence intervals: Acoustic features generated from the FastSpeech 2 acoustic model were used to
compose the input auxiliary features.

System Model Fl 2 MOS M1 M2
S1 FastSpeech 2 + WaveNet 3.90+0.11 3.81+0.10 3.434+0.11 3.09+0.10
S2 FastSpeech 2 + PWG 3.76+0.11 3.624+0.11 3.63+0.11 3.78+0.10
S3 FastSpeech 2 + PWG-cGAN-D 4.02+0.10 4.03£0.10 4.16£0.10 4.0640.10
S7 FastSpeech 2 + PWG-V/UV-D (proposed) 4.20+0.10 4.18+0.09 4.21+0.09 4.314+0.09
R1 Recordings 4.63+0.08 4.67£0.07 4.61£0.08 4.6440.08




Voicing-aware discriminators

Evaluation results

Table 2. MOS test results with 95% confidence intervals in analysis/synthesis: The speech samples were generated using the acoustic
features extracted from the recorded speech. PWG denotes Parallel WaveGAN for short. Note that systems S2 and S3 used D" as the primary
discriminator. All the models were trained in a speaker-independent manner.

System  Model Voiced Unvoiced Discriminator MOS
segments segments  conditioning F1 F2 MI M2
S1 WaveNet - - - 3.644+0.12 3.83+0.11 3.33+£0.12 3.13£0.11
S2 PWG - - - 3.61+0.11 3.55+0.11 3.57£0.12 3.61£0.11
S3 PWG-cGAN-D - - Yes 4.04+0.10 3.95+0.10 3.91£0.11 3.9740.10
S4 PWG-V/UV-D DY DY Yes 3.60+0.12 3.5940.11 3.34+0.11 3.48+0.11
S5 PWG-V/UV-D D™ DY Yes 3.67+£0.11 3.484+0.11 3.294+0.12 3.38+0.11
S6 PWG-V/UV-D D™ D" Yes 3.77+0.11  3.88+0.10 3.57+0.11 3.34+0.11
S7 PWG-V/UV-D (proposed) D" D™ Yes 4.11+0.10 4.05£0.10 4.04+0.10 4.084+0.10
R1 Recordings - - - 4.63+0.08 4.67+0.07 4.614+0.08 4.6440.08

Table 3. MOS test results with 95% confidence intervals: Acoustic features generated from the FastSpeech 2 acoustic model were used to
compose the input auxiliary features.

MOS

System Model

S1 FastSpeech 2 + WaveNet

S2 FastSpeech 2 + PWG

S3 FastSpeech 2 + PWG-cGAN-D

S7 FastSpeech 2 + PWG-V/UV-D (proposed)

R1

/| /|

3.43£0.11 3.09£0.10
3.63£0.11  3.7840.10
4.16+0.10 4.06+0.10
4.21+0.09 4.31+0.09

3.90£0.11
3.76£0.11
4.02+0.10
4.20+0.10

3.81£0.10
3.62+0.11
4.03+0.10
4.18+0.09

gcoraings

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp.
6039-6043.
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Demo samples

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp.
6039-6043.



Parallel waveform synthesis

Toward high-quality synthesis: Harmonic/noise generators



Harmonic/noise generators

Harmonicity analysis in the frequency domain
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M.-J. Hwang, et al., “High-fidelity Parallel WaveGAN with multi-band harmonic-plus-noise model,” Proc. INTERSPEECH, 2021, pp. 2227-2231.



Harmonic/noise generators

Parametric LPC vocoder (binary decision)
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M.-J. Hwang, et al., “High-fidelity Parallel WaveGAN with multi-band harmonic-plus-noise model,” Proc. INTERSPEECH, 2021, pp. 2227-2231.



Harmonic/noise generators

Mixed excitation-based parametric vocoder
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M.-J. Hwang, et al., “High-fidelity Parallel WaveGAN with multi-band harmonic-plus-noise model,” Proc. INTERSPEECH, 2021, pp. 2227-2231.



Harmonic/noise generators

Mixed excitation-based parametric vocoder
How periodic? = Harmonicity (ex. MELP and MBE vocoders)
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M.-J. Hwang, et al., “High-fidelity Parallel WaveGAN with multi-band harmonic-plus-noise model,” Proc. INTERSPEECH, 2021, pp. 2227-2231.



Harmonic/noise generators

Mixed excitation-based parametric vocoder
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M.-J. Hwang, et al., “High-fidelity Parallel WaveGAN with multi-band harmonic-plus-noise model,” Proc. INTERSPEECH, 2021, pp. 2227-2231.



Harmonic/noise generators

Model architecture
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M.-J. Hwang, et al., “High-fidelity Parallel WaveGAN with multi-band harmonic-plus-noise model,” Proc. INTERSPEECH, 2021, pp. 2227-2231.



Harmonic/noise generators

Model architecture
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M.-J. Hwang, et al., “High-fidelity Parallel WaveGAN with multi-band harmonic-plus-noise model,” Proc. INTERSPEECH, 2021, pp. 2227-2231.



Harmonic/noise generators

Model architecture
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M.-J. Hwang, et al., “High-fidelity Parallel WaveGAN with multi-band harmonic-plus-noise model,” Proc. INTERSPEECH, 2021, pp. 2227-2231.



Harmonic/noise generators

Model architecture
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M.-J. Hwang, et al., “High-fidelity Parallel WaveGAN with multi-band harmonic-plus-noise model,” Proc. INTERSPEECH, 2021, pp. 2227-2231.



Harmonic/noise generators

Model architecture

Conditional Harmonicity
Features Estimator

M.-J. Hwang, et al., “High-fidelity Parallel WaveGAN with multi-band harmonic-plus-noise model,” Proc. INTERSPEECH, 2021, pp. 2227-2231.



Harmonic/noise generators

Model architecture

Conditional Harmonicity
Features Estimator

Parametric vocoders: Harmonicity has been estimated by rule-based analysis methods

M.-J. Hwang, et al., “High-fidelity Parallel WaveGAN with multi-band harmonic-plus-noise model,” Proc. INTERSPEECH, 2021, pp. 2227-2231.



Harmonic/noise generators

Model architecture

Conditional Harmonicity
Features Estimator

Parametric vocoders: Harmonicity has been estimated by rule-based analysis methods
Alternatively, we design learnable harmonicities optimized CNN blocks with input condition

M.-J. Hwang, et al., “High-fidelity Parallel WaveGAN with multi-band harmonic-plus-noise model,” Proc. INTERSPEECH, 2021, pp. 2227-2231.



Harmonic/noise generators

Evaluation results

Table 1. The model size, inference speed, and MOS results with 95% confidence intervals: Acoustic features extracted from the
recorded speech signal were used to compose the input acoustic features. The MOS results for highest score is in bold font.

Use of Input signals Type of Model Inference
Label  Model HN model for FI)-l-\.’\a'ag;;fel\let HI\)IJII)nodel size (M) speed MOS
S1 WaveNet [21] — — - 3.81 0.34 x 10~ 4.224+0.12
S2 PWG [7] — — — 0.94 50.38 3.46 + 0.37
S3 HN-PWG w/o noise [16] Yes Sine + V/UV Full-band 0.94 4791 4.024+0.14
S4 HN-PWG Yes Sine + noise + V/UV  Full-band 0.94 4793 4.18 +£0.15
S5 Multi-band HN-PWG Yes Sine + noise + V/UV  Multi-band 0.99 47.87 4.29+4+0.12
S6 Recordings - - — — — 4.41 +0.12

th
Si: ¢ system; HN: harmonic-plus-noise; PWG: Parallel WaveGAN; H-WaveNet: harmonic WaveNet; V/UV: voicing flags upsampled from frame-level to sample-level.

Note that inference speed, k, indicates that a system was able to generate waveforms k times faster than real-time. This evaluation was conducted on a server with a single
NVIDIA Tesla V100 GPU.

Table 2. Subjective MOS test results with 95% confidence
intervals for the TTS systems with respect to the different
vocoding models. The MOS results for highest score is in bold

font.

Label  Model MOS
S-TT  WaveNet [21] 4.03 + 0.19
S-T2  PWG [7] 3.56 + 0.28
S-T3  HN-PWG w/o noise 2.60 + 0.22
S-T4 HN-PWG 4.01 +£0.17
S-T5 Multi-band HN-PWG 4.03 + 0.16

S6 Recordings 441+ 0.12

th . . . e
S-Ti: ¢ system that generates speech waveform from the acoustic features pre-
dicted by TTS model.

Acoustic model: Tacotron 2

M.-J. Hwang, et al., “High-fidelity Parallel WaveGAN with multi-band harmonic-plus-noise model,” Proc. INTERSPEECH, 2021, pp. 2227-2231.
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PARALLEL WAVEGAN: A FAST WAVEFORM GENERATION MODEL BASED ON
GENERATIVE ADVERSARIAL NETWORKS WITH MULTI-RESOLUTION SPECTROGRAM

Ryuichi Yamamoto', Eunwoo Song® and Jae-Min Kim?

'LINE Corp., Tokyo, Japan.
NAVER Corp., Seongnam, Korea

ABSTRACT

We propose Parallel WaveGAN, a distillation-free, fast, and small-
footprint waveform generation method using a generative adver-
sarial network. In the proposed method, a non-autoregressive
WaveNet is trained by jointly optimizing multi-resolution spectro-
gram and adversarial loss functions, which can effectively capture
the time-frequency distribution of the realistic speech waveform.
As our method does not require density distillation used in the
conventional teacher-student framework, the entire model can be
easily trained. Furthermore, our model 1s able to generate high-
fidelity speech even with its compact architecture. In particular,
the proposed Parallel WaveGAN has only 1.44 M parameters and
can generate 24 kHz speech waveform 28.68 times faster than real-
time on a single GPU environment. Perceptual listening test results
verify that our proposed method achieves 4.16 mean opinion score
within a Transformer-based text-to-speech framework, which is
comparative to the best distillation-based Parallel WaveNet sys-
tem.
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IMPROVED PARALLEL WAVEGAN VOCODER WITH PERCEPTUALLY WEIGHTED
SPECTROGRAM LOSS

Eunwoo Songl, Ryuichi Yamamoto?, Min-Jae Hwangg, Jin-Seob Kim", Ohsung Kwon', Jae-Min Kim!

INAVER Corp., Seongnam, Korea
2LINE Corp., Tokyo, Japan

3Search Solutions Inc., Seongnam, Korea

ABSTRACT

This paper proposes a spectral-domain perceptual weighting
technique for Parallel WaveGAN-based text-to-speech (TTS)
systems. The recently proposed Parallel WaveGAN vocoder
successfully generates waveform sequences using a fast
non-autoregressive WaveNet model. By employing multi-
resolution short-time Fourier transform (MR-STFT) criteria
with a generative adversarial network, the light-weight con-
volutional networks can be effectively trained without any
distillation process. To further improve the vocoding perfor-
mance, we propose the application of frequency-dependent

weighting to the MR-STFT loss function. The proposed
method penalizes perceptually-sensitive errors in the fre-
quency domain; thus, the model is optimized toward reducing

auditory noise in the synthesized speech. Subjective listening
test results demonstrate that our proposed method achieves
4.21 and 4.26 TTS mean opinion scores for female and male
Korean speakers, respectively.
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Summary

PARALLEL WAVEFORM SYNTHESIS BASED ON GENERATIVE ADVERSARIAL
NETWORKS WITH VOICING-AWARE CONDITIONAL DISCRIMINATORS

Ryuichi Yamamoto', Eunwoo Song?, Min-Jae Hwang® and Jae-Min Kim

2

'LINE Corp., Tokyo, Japan
2NAVER Corp., Seongnam, Korea
3Search Solutions Inc., Seongnam, Korea

ABSTRACT

This paper proposes voicing-aware conditional discriminators for
Parallel WaveGAN-based waveform synthesis systems. In this
framework, we adopt a projection-based conditioning method
that can significantly improve the discriminator’s performance.
Furthermore, the conventional discriminator is separated into
two waveform discriminators for modeling voiced and unvoiced

speech. As each discriminator learns the distinctive character-
istics of the harmonic and noise components, respectively, the
adversarial training process becomes more efficient, allowing the
generator to produce more realistic speech waveforms. Subjective
test results demonstrate the superiority of the proposed method
over the conventional Parallel WaveGAN and WaveNet systems.
In particular, our speaker-independently trained model within a
FastSpeech 2 based text-to-speech framework achieves the mean
opinion scores of 4.20, 4.18, 4.21, and 4.31 for four Japanese
speakers, respectively.
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High-fidelity Parallel WaveGAN with Multi-band Harmonic-plus-Noise Model

Min-Jae Hwang'*, Ryuichi Yamamoto®*, Eunwoo Song® and Jae-Min Kim?

Search Solutions Inc., Seongnam, Korea
?LINE Corp.,Tokyo, Japan
SNAVER Corp., Seongnam, Korea

Abstract

This paper proposes a multi-band harmonic-plus-noise (HN)
Parallel WaveGAN (PWG) vocoder. To generate a high-
fidelity speech signal, it is important to well-reflect the
harmonic-noise characteristics of the speech waveform in the
time-frequency domain. However, it is difficult for the con-
ventional PWG model to accurately match this condition,
as its single generator inefficiently represents the compli-
cated nature of harmonic-noise structures. In the proposed
method, the HN WaveNet models are employed to overcome
this limitation, which enable the separate generation of the
harmonic and noise components of speech sienals from the
pitch-dependent sine wave and Gaussian noise sources, re-

spectively. Then, the energy ratios between harmonic_and
noise components in multiple frequency bands (i.e., subband

harmonicities) are predicted by an additional harmonicity es-
timator. Weighted by the estimated harmonicities, the gain

of harmonic and noise components in_each subband is ad-

justed, and finally mixed together to compose the full-band
speech signal. Subjective evaluation results showed that the

proposed method significantly improved the perceptual qual-
ity of the synthesized speech.
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