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Vocoding models: Overview



Vocoding models: Overview
Estimating speech signals from acoustic parameters
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Vocoding models: Overview
Estimating speech signals from acoustic parameters

WaveRNN
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Parameters

N. Kalchbrenner, et al., “Efficient neural audio synthesis,” arXiv:1802.08435, 2018.

WaveRNN based on the RNN model

What is the main model?



Vocoding models: Overview
Estimating speech signals from acoustic parameters

WaveGlow
Acoustic

Parameters

R. Prenger, et al., "WaveGlow: A flow-based generative network for speech synthesis." in Proc. ICASSP, 2019.

WaveGlow based on the Flow model

What is the main model?
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Vocoding models: Overview
Estimating speech signals from acoustic parameters

WaveNet
Acoustic

Parameters

A. Van Den Oord, et al., “WaveNet: A generative model for raw audio,” CoRR abs/1609.03499, 2016.

WaveNet based on the CNN model

What is the main model?

Estimating the current sample from the previous samples
We define this method as autoregressive vocoding model

WaveNet generates high-quality synthetic speech
However, it takes about 5 minutes to generate 1 sec audio



Vocoding models: Overview
Estimating speech signals from acoustic parameters

A. van den Oord, et al., “Parallel WaveNet: Fast high-fidelity speech synthesis,” in Proc. ICML, 2018.

One of the alternative method to address WaveNet’s slow inference speed is
the non-autoregressive Parallel WaveNet



Vocoding models: Overview
Estimating speech signals from acoustic parameters

A. van den Oord, et al., “Parallel WaveNet: Fast high-fidelity speech synthesis,” in Proc. ICML, 2018.

Non-autoregressive Parallel WaveNet (=student) is trained to learn 
the distribution of the autoregressive WaveNet (=teachure)



Vocoding models: Overview
Estimating speech signals from acoustic parameters

A. van den Oord, et al., “Parallel WaveNet: Fast high-fidelity speech synthesis,” in Proc. ICML, 2018.

Non-autoregressive Parallel WaveNet doesn’t require the previous samples 
Its inference speed in unlimited

(it takes about 0.02 sec to generate 1 sec audio)



Vocoding models: Overview
Estimating speech signals from acoustic parameters

A. van den Oord, et al., “Parallel WaveNet: Fast high-fidelity speech synthesis,” in Proc. ICML, 2018.

There remain problems in the difficult training method…
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Vocoding models: Parallel WaveGAN
Deep learning-based TTS system



Vocoding models: Parallel WaveGAN

1. Removed the teacher-student distillation process
2. Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss

R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc. 
ICASSP, 2020, pp. 6194-6198. 
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1. Removed the teacher-student distillation process
2. Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss

R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc. 
ICASSP, 2020, pp. 6194-6198. 

STFT (short-time Fourier transform)? 

Time-frequency representation of speech signal
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Vocoding models: Parallel WaveGAN

R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc. 
ICASSP, 2020, pp. 6194-6198. 

Demo samples Open source
(implemented by Tomoki Hayashi, Nagoya Univ.)
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Parallel WaveGAN: Toward high-quality synthesis



Toward high-quality synthesis
Deep learning-based TTS system

“Weighted spectral Loss”



Toward high-quality synthesis
Deep learning-based TTS system

“Voicing-aware discriminators”



Toward high-quality synthesis

“Harmonic/noise generators”
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Toward high-quality synthesis: Speech fundamentals



Speech fundamentals
Speech waveform



Speech fundamentals
Pitch period

• Pitch period = 𝑻_𝟎 ≈ 𝑻_𝟏 ≈ 𝑻_𝟐

• Long-term period of speech (time-domain)

• Fundamental frequency (F0) = 𝟏∕𝑻_𝟎

• 1 / PP (frequency-domain)

• Female voice : Ave. 200 Hz

• Male voice : Ave. 100 Hz

• Harmonic spectrum 

• Multiple peaks of speech spectrum (interval=F0)

• Formant frequency (F1, F2, …)

• Vocal tract resonance

T0 T1 T2

F0



Speech fundamentals
Formant frequency

• Pitch period = 𝑻_𝟎 ≈ 𝑻_𝟏 ≈ 𝑻_𝟐

• Long-term period of speech (time-domain)

• Fundamental frequency (F0) = 𝟏∕𝑻_𝟎

• 1 / PP (frequency-domain)

• Female voice : Ave. 200 Hz

• Male voice : Ave. 100 Hz

• Harmonic spectrum 

• Multiple peaks of speech spectrum (interval=F0)

• Formant frequency (F1, F2, …)

• Vocal tract resonance

Envelope

F1
F2 F3 F4



How do we produce speech?
Speech production model

• Lung

• Power supply

• Vocal source

• Voiced sound : quasi-periodic

• Unvoiced sound : noisy

• Vocal tract filter

• Shaping voice color

https://www.youtube.com/watch?v=X_JvfZiGEek

Filter SpeechSource

https://www.youtube.com/watch?v=X_JvfZiGEek
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How do we produce speech?
Speech production model

• Lung

• Power supply

• Vocal source

• Voiced sound : quasi-periodic

• Unvoiced sound : noisy

• Vocal tract filter

• Shaping voice color

Filter SpeechSourcehttps://www.youtube.com/watch?v=X_JvfZiGEek

• Linear prediction
• Weighted sum. of previous samples.

• Ƹ𝑠 𝑛 = σ𝑘=1
𝑝

𝑎 𝑘 𝑠(𝑛 − 𝑘)

• Prediction error
• Time-domain

• 𝑒 𝑛 = 𝑠 𝑛 − Ƹ𝑠 𝑛 = 𝑠 𝑛 − σ𝑘=1
𝑝

𝑎 𝑘 𝑠(𝑛 − 𝑘)

• Minimizing mean square error

• argmin
𝑎𝑘

𝐸 𝑠 𝑛 − σ𝑘=1
𝑝

𝑎 𝑘 𝑠(𝑛 − 𝑘)
2

https://www.youtube.com/watch?v=X_JvfZiGEek
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• Linear prediction
• Weighted sum. of previous samples.

• Ƹ𝑠 𝑛 = σ𝑘=1
𝑝

𝑎 𝑘 𝑠(𝑛 − 𝑘)

• Prediction error
• Frequency-domain

• 𝑆 𝑧 = 𝐸 𝑧 𝐻 𝑧 = 𝐸(𝑧) ×
1

1−σ𝑘=1
𝑝

𝑎𝑘𝑧−𝑘

LPC filter

https://www.youtube.com/watch?v=X_JvfZiGEek
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How do we produce speech?
Speech production model

• Lung

• Power supply

• Vocal source

• Voiced sound : quasi-periodic

• Unvoiced sound : noisy

• Vocal tract filter

• Shaping voice color

Filter SpeechSource

𝑆 𝑧 = 𝐸 𝑧 𝐻 𝑧 = 𝐸(𝑧) ×
1

1 − σ
𝑘=1
𝑝

𝑎𝑘𝑧
−𝑘



How do we produce speech?
Speech production model

→ Time-domain



How do we produce speech?
Parametric LPC vocoder



Parallel waveform synthesis

Toward high-quality synthesis: Perceptually weighted spectral loss



Perceptually weighted spectral loss
Combining LPC synthesis filter with neural excitation vocoders

Neural
Vocoder

Acoustic
Parameters

LPC
Synthesis

Excitation
Signals

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.

https://www.youtube.com/watch?v=X_JvfZiGEek

Speech production model

Vocal source

Voiced sound: quasi-periodic
Unvoiced sound: aperiodic

Vocal tract

→ Excitation

→ LPC synthesis

Shaping voice color

https://www.youtube.com/watch?v=X_JvfZiGEek


Perceptually weighted spectral loss
Combining LPC synthesis filter with neural excitation vocoders

Neural
Vocoder

Acoustic
Parameters

LPC
Synthesis

Excitation
Signals

WaveNet + LPC filter = ExcitNet, LP-WaveNet, …

WaveRNN + LPC filter = LPCNet

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.
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Perceptually weighted spectral loss
Combining LPC synthesis filter with neural excitation vocoders

Neural
Vocoder

Acoustic
Parameters

LPC
Synthesis

Excitation
Signals

WaveNet + LPC filter = ExcitNet, LP-WaveNet, …

WaveRNN + LPC filter = LPCNet

WaveGlow + LPC filter = ?

Parallel WaveGAN + LPC filter = ?

Autoregressive models

Non-autoregressive models

→ Not suitable for estimating excitation signals

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.



Recall: Parallel WaveGAN

1. Removed the teacher-student distillation process
2. Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss

STFT is calculated in different T/F resolutionsSTFT is calculated in different T/F resolutions

There are two loss functions

One penalizes large energy components

The other penalizes small energy components

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.
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3. Further improved its quality by introducing the multi-resolution STFT loss

+ Applying perceptual weighting filter

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.



Perceptually weighted spectral loss

1. Removed the teacher-student distillation process
2. Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss

+ Applying perceptual weighting filter

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.

This penalizes perceptually-sensitive errors in the freq. domain



Perceptually weighted spectral loss
Evaluation results

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.

Acoustic model: Tacotron 2
NS: Noise-shaping (similar to LPC synthesis)
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Perceptually weighted spectral loss
Evaluation results

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.

Acoustic model: Tacotron 2
NS: Noise-shaping (similar to LPC synthesis)



Perceptually weighted spectral loss

Demo samples

E. Song, et al., “Improved Parallel WaveGAN with perceptually weighted spectrogram loss,” Proc. SLT, 2021, pp. 470-476.
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Toward high-quality synthesis: Voicing-aware discriminators



Voicing-aware discriminators
Voiced/unvoiced sounds

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp. 
6039-6043.

Voiced sound: Quasi-periodic Unvoiced sound: aperiodic
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Voicing-aware discriminators
Voiced/unvoiced sounds

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp. 
6039-6043.

V: Characterized by slowly evolving harmonic components

Voiced sound: Quasi-periodic Unvoiced sound: aperiodic

Discriminator should cover long-term variations of voiced sound

UV: Characterized by rapidly evolving noise components

Discriminator should catch short-term variations of unvoiced sound



Voicing-aware discriminators
Voiced/unvoiced masking

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp. 
6039-6043.

Conventional method Voicing-aware discriminators



Voicing-aware discriminators
Voiced/unvoiced masking

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp. 
6039-6043.

Conventional method Voicing-aware discriminators
T. Miyato, et al., “cGANs with projection discriminator,” Proc. ICLR, 2018.



Voicing-aware discriminators
Receptive field

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp. 
6039-6043.

Voiced discriminator

Dilated convolution with long receptive field
Covering long-term variations of voiced sound

Unvoiced discriminator

Non-dilated convolution with short receptive field
Catching short-term variations of unvoiced sound



Voicing-aware discriminators
Receptive field

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp. 
6039-6043.

Voiced discriminator

Dilated convolution with long receptive field
Covering long-term variations of voiced sound

Unvoiced discriminator

Non-dilated convolution with short receptive field
Catching short-term variations of unvoiced sound

ProposedRecording Baseline



Voicing-aware discriminators
Evaluation results

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp. 
6039-6043.



Voicing-aware discriminators
Evaluation results

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp. 
6039-6043.



Voicing-aware discriminators

R. Yamamoto, et al., “Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators,” Proc. ICASSP, 2021, pp. 
6039-6043.

Demo samples



Parallel waveform synthesis

Toward high-quality synthesis: Harmonic/noise generators



Harmonic/noise generators
Harmonicity analysis in the frequency domain

M.-J. Hwang, et al., “High-fidelity Parallel WaveGAN with multi-band harmonic-plus-noise model,” Proc. INTERSPEECH, 2021, pp. 2227-2231.

Very harmonic

Very noisy

Less harmonic

Less noisy

Low frequency region

Harmonic characteristics > Noise characteristics

High frequency region

Harmonic characteristics < Noise characteristics



Harmonic/noise generators
Parametric LPC vocoder (binary decision)

M.-J. Hwang, et al., “High-fidelity Parallel WaveGAN with multi-band harmonic-plus-noise model,” Proc. INTERSPEECH, 2021, pp. 2227-2231.

Low frequency region

Harmonic characteristics > Noise characteristics

High frequency region

Harmonic characteristics < Noise characteristics

PulseVoiced?

Unvoiced?



Harmonic/noise generators
Mixed excitation-based parametric vocoder

M.-J. Hwang, et al., “High-fidelity Parallel WaveGAN with multi-band harmonic-plus-noise model,” Proc. INTERSPEECH, 2021, pp. 2227-2231.

Low frequency region

Harmonic characteristics > Noise characteristics

High frequency region

Harmonic characteristics < Noise characteristics



Harmonic/noise generators
Mixed excitation-based parametric vocoder

M.-J. Hwang, et al., “High-fidelity Parallel WaveGAN with multi-band harmonic-plus-noise model,” Proc. INTERSPEECH, 2021, pp. 2227-2231.

Low frequency region

Harmonic characteristics > Noise characteristics

High frequency region

Harmonic characteristics < Noise characteristics

How periodic? → Harmonicity (ex. MELP and MBE vocoders)
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Low frequency region

Harmonic characteristics > Noise characteristics

High frequency region

Harmonic characteristics < Noise characteristics

How aperiodic? → aperiodicity (ex. STRAIGHT and WORLD vocoders)
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Parametric vocoders: Harmonicity has been estimated by rule-based analysis methods
Alternatively, we design learnable harmonicities optimized CNN blocks with input condition
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Acoustic model: Tacotron 2
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