Parallel waveform synthesis

Eunwoo Song / Naver Clova

Who am I?

Education

- B.S., E.E., Yonsei Univ., Seoul, Korea (Aug 2010)
- Combined M.S. and Ph.D., EE., Yonsei Univ., Seoul, Korea (Feb 2019)

Work experience

- NAVER Corp., Seongnam, Korea
 - Senior Research Scientist (Mar 2017 present)
 - DNN TTS Team Lead, Clova Voice
- Seoul National Univ., Seoul, Korea
 - Adjunct professor, Artificial Intelligence Institute (Aug 2022 present)

Who am I?

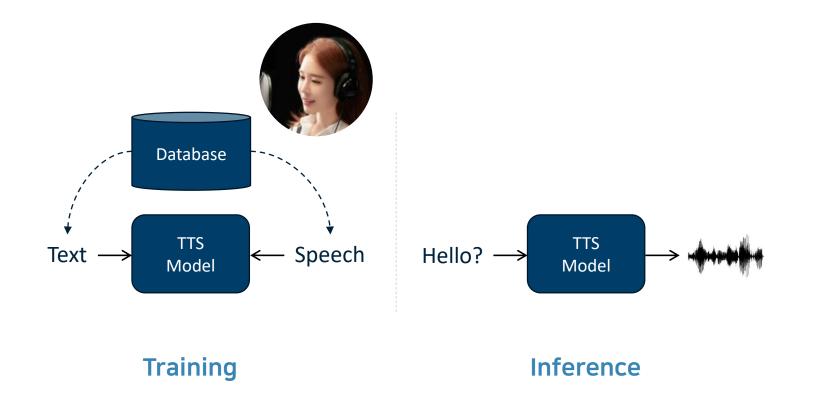
Education

- B.S., E.E., Yonsei Univ., Seoul, Korea (Aug 2010)
- Combined M.S. and Ph.D., EE., Yonsei Univ., Seoul, Korea (Feb 2019)

Work experience

- NAVER Corp., Seongnam, Korea
 - Senior Research Scientist (Mar 2017 present)
 - DNN TTS Team Lead, Clova Voice
- Seoul National Univ., Seoul, Korea
 - Adjunct professor, Artificial Intelligence Institute (Aug 2022 present)

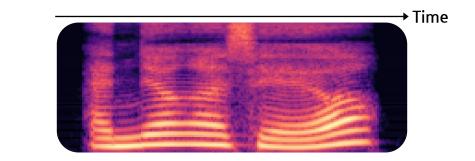
Deep learning-based TTS system



Human-like voice quality 🙄

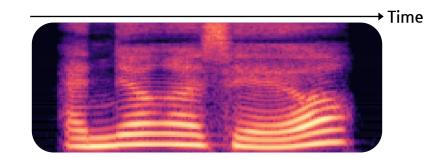
Deep learning-based TTS system

Deep learning-based TTS system



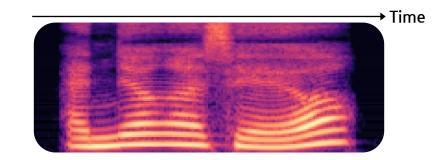
Estimating acoustic parameters from text inputs

Deep learning-based TTS system



Estimating speech signals from acoustic parameters

Deep learning-based TTS system



Estimating speech signals from acoustic parameters

PARALLEL WAVEGAN: A FAST WAVEFORM GENERATION MODEL BASED ON GENERATIVE ADVERSARIAL NETWORKS WITH MULTI-RESOLUTION SPECTROGRAM

*Ryuichi Yamamoto*¹, *Eunwoo Song*² and *Jae-Min Kim*²

¹LINE Corp., Tokyo, Japan. ²NAVER Corp., Seongnam, Korea

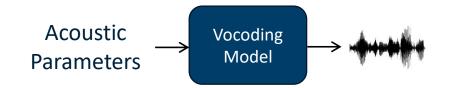
ABSTRACT

We propose Parallel WaveGAN, a distillation-free, fast, and smallfootprint waveform generation method using a generative adversarial network. In the proposed method, a non-autoregressive WaveNet is trained by jointly optimizing multi-resolution spectrogram and adversarial loss functions, which can effectively capture the time-frequency distribution of the realistic speech waveform. As our method does not require density distillation used in the conventional teacher-student framework, the entire model can be easily trained. Furthermore, our model is able to generate highfidelity speech even with its compact architecture. In particular, the proposed Parallel WaveGAN has only 1.44 M parameters and can generate 24 kHz speech waveform 28.68 times faster than realtime on a single GPU environment. Perceptual listening test results verify that our proposed method achieves 4.16 mean opinion score within a Transformer-based text-to-speech framework, which is comparative to the best distillation-based Parallel WaveNet system.

Parallel waveform synthesis

Vocoding models: Overview

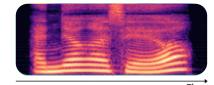
Estimating speech signals from acoustic parameters



Acoustic parameters..?

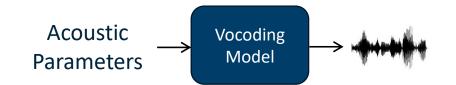
Representing speech characteristics such as F0, spectrum, v/uv ...

Time



Time

Estimating speech signals from acoustic parameters



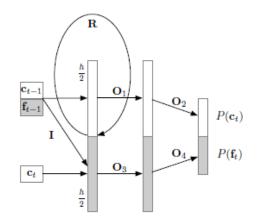
What is the main model?

Estimating speech signals from acoustic parameters



What is the main model?

WaveRNN based on the RNN model

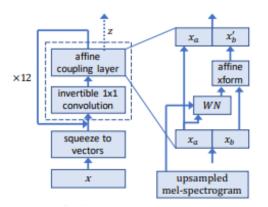


N. Kalchbrenner, et al., "Efficient neural audio synthesis," arXiv:1802.08435, 2018.

Estimating speech signals from acoustic parameters

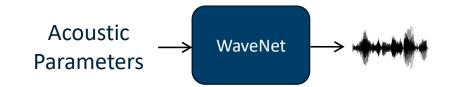
What is the main model?

WaveGlow based on the Flow model



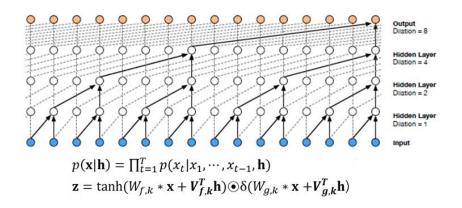
R. Prenger, et al., "WaveGlow: A flow-based generative network for speech synthesis." in Proc. ICASSP, 2019.

Estimating speech signals from acoustic parameters



What is the main model?

WaveNet based on the CNN model



A. Van Den Oord, et al., "WaveNet: A generative model for raw audio," CoRR abs/1609.03499, 2016.

Estimating speech signals from acoustic parameters

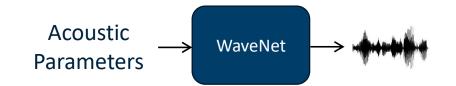
What is the main model?

WaveNet based on the CNN model

Estimating the current sample from the previous samples We define this method as autoregressive vocoding model

A. Van Den Oord, et al., "WaveNet: A generative model for raw audio," CoRR abs/1609.03499, 2016.

Estimating speech signals from acoustic parameters



What is the main model?

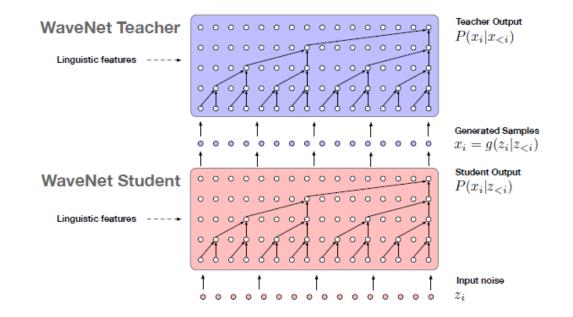
WaveNet based on the CNN model

Estimating the current sample from the previous samples We define this method as autoregressive vocoding model

WaveNet generates high-quality synthetic speech However, it takes about 5 minutes to generate 1 sec audio

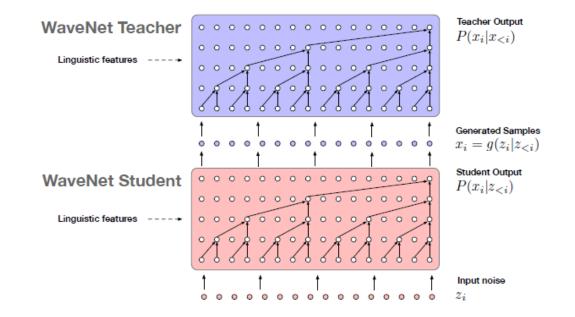
A. Van Den Oord, et al., "WaveNet: A generative model for raw audio," CoRR abs/1609.03499, 2016.

Estimating speech signals from acoustic parameters



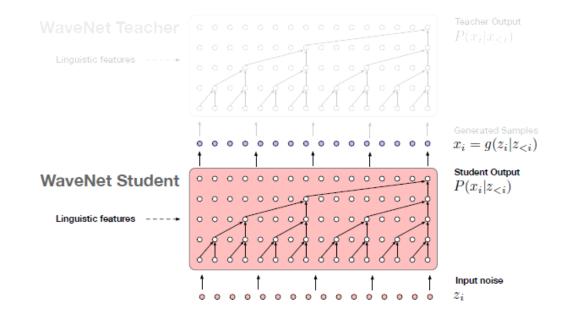
One of the alternative method to address WaveNet's slow inference speed is the non-autoregressive Parallel WaveNet

Estimating speech signals from acoustic parameters



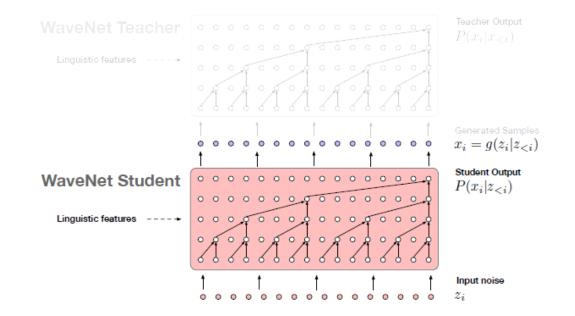
Non-autoregressive Parallel WaveNet (=student) is trained to learn the distribution of the autoregressive WaveNet (=teachure)

Estimating speech signals from acoustic parameters



Non-autoregressive Parallel WaveNet doesn't require the previous samples Its inference speed in unlimited (it takes about 0.02 sec to generate 1 sec audio)

Estimating speech signals from acoustic parameters



There remain problems in the difficult training method...

Parallel waveform synthesis

Vocoding models: Parallel WaveGAN

PARALLEL WAVEGAN: A FAST WAVEFORM GENERATION MODEL BASED ON GENERATIVE ADVERSARIAL NETWORKS WITH MULTI-RESOLUTION SPECTROGRAM

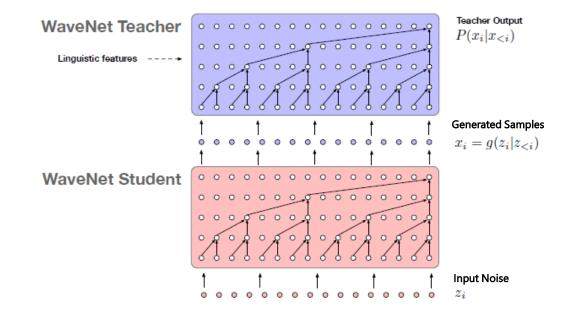
*Ryuichi Yamamoto*¹, *Eunwoo Song*² and *Jae-Min Kim*²

¹LINE Corp., Tokyo, Japan. ²NAVER Corp., Seongnam, Korea

ABSTRACT

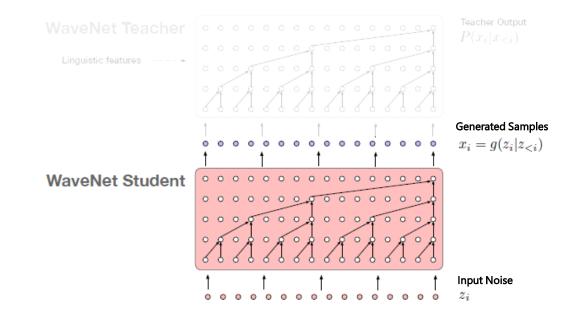
We propose Parallel WaveGAN, a distillation-free, fast, and smallfootprint waveform generation method using a generative adversarial network. In the proposed method, a non-autoregressive WaveNet is trained by jointly optimizing multi-resolution spectrogram and adversarial loss functions, which can effectively capture the time-frequency distribution of the realistic speech waveform. As our method does not require density distillation used in the conventional teacher-student framework, the entire model can be easily trained. Furthermore, our model is able to generate highfidelity speech even with its compact architecture. In particular, the proposed Parallel WaveGAN has only 1.44 M parameters and can generate 24 kHz speech waveform 28.68 times faster than realtime on a single GPU environment. Perceptual listening test results verify that our proposed method achieves 4.16 mean opinion score within a Transformer-based text-to-speech framework, which is comparative to the best distillation-based Parallel WaveNet system.

1. Removed the teacher-student distillation process

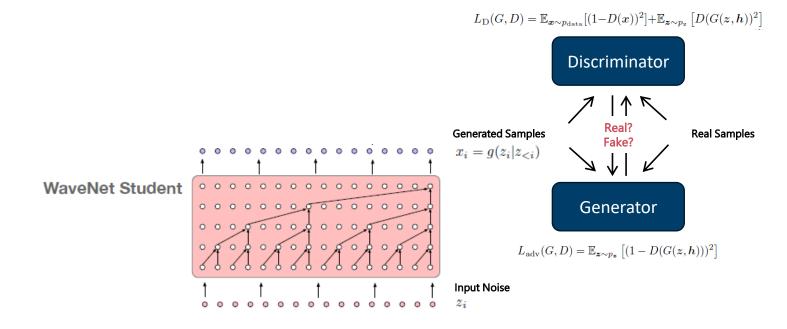


1. Removed the teacher-student distillation process

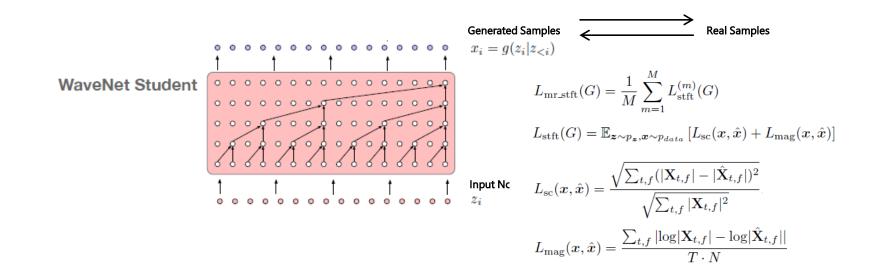
 \rightarrow Entire model can be "easily" trained



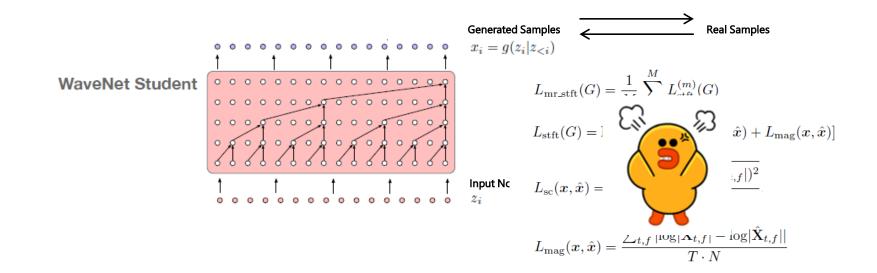
- 1. Removed the teacher-student distillation process
- 2. Improved synthetic quality by using the adversarial training method



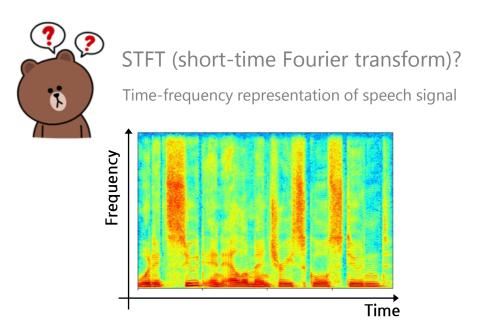
- 1. Removed the teacher-student distillation process
- 2. Improved synthetic quality by using the adversarial training method
- 3. Further improved its quality by introducing the multi-resolution STFT loss



- 1. Removed the teacher-student distillation process
- 2. Improved synthetic quality by using the adversarial training method
- 3. Further improved its quality by introducing the multi-resolution STFT loss

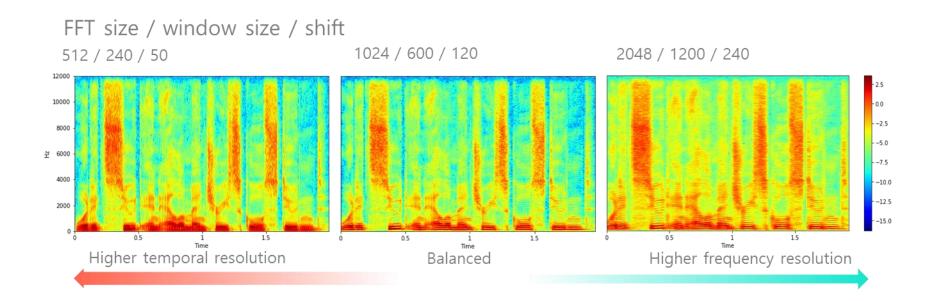


- 1. Removed the teacher-student distillation process
- 2. Improved synthetic quality by using the adversarial training method
- 3. Further improved its quality by introducing the multi-resolution STFT loss



- 1. Removed the teacher-student distillation process
- 2. Improved synthetic quality by using the adversarial training method
- 3. Further improved its quality by introducing the multi-resolution STFT loss

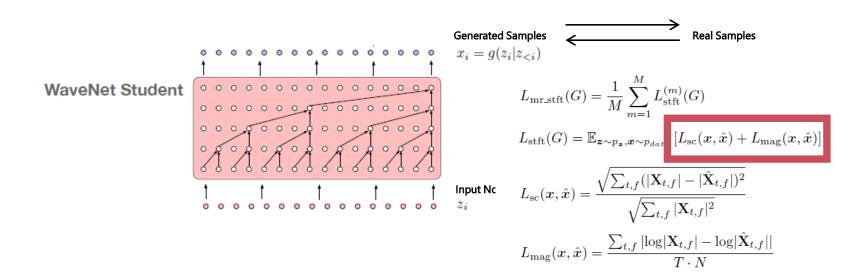
STFT is calculated in different T/F resolutions



- 1. Removed the teacher-student distillation process
- 2. Improved synthetic quality by using the adversarial training method
- 3. Further improved its quality by introducing the multi-resolution STFT loss

STFT is calculated in different T/F resolutions

There are two loss functions

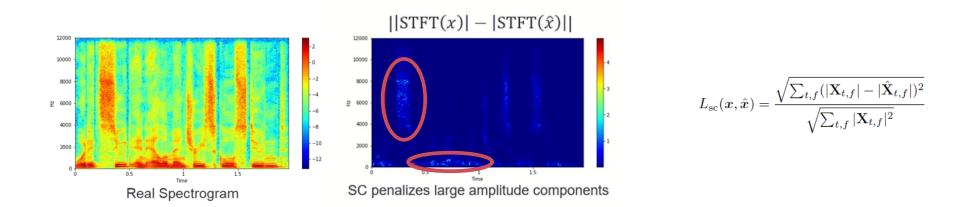


- 1. Removed the teacher-student distillation process
- 2. Improved synthetic quality by using the adversarial training method
- 3. Further improved its quality by introducing the multi-resolution STFT loss

STFT is calculated in different T/F resolutions

There are two loss functions

One penalizes large energy components



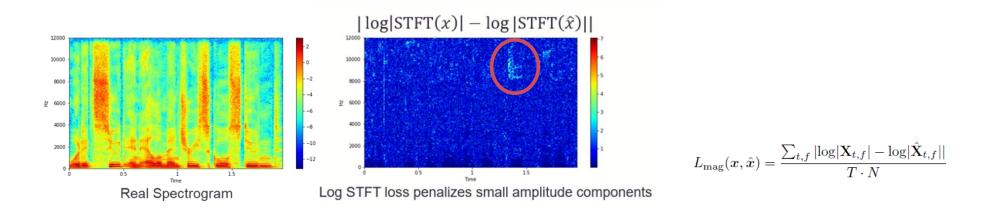
- 1. Removed the teacher-student distillation process
- 2. Improved synthetic quality by using the adversarial training method
- 3. Further improved its quality by introducing the multi-resolution STFT loss

STFT is calculated in different T/F resolutions

There are two loss functions

One penalizes large energy components

The other penalizes small energy components



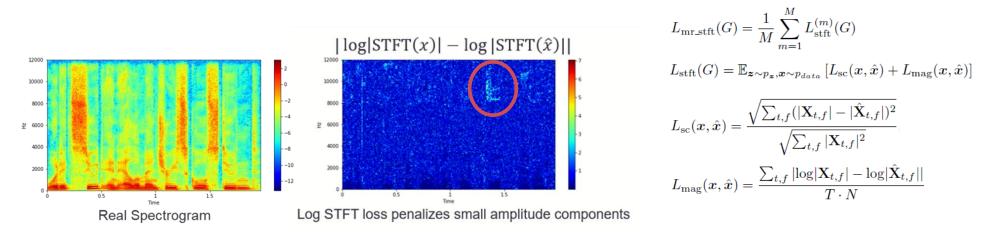
- 1. Removed the teacher-student distillation process
- 2. Improved synthetic quality by using the adversarial training method
- 3. Further improved its quality by introducing the multi-resolution STFT loss

STFT is calculated in different T/F resolutions

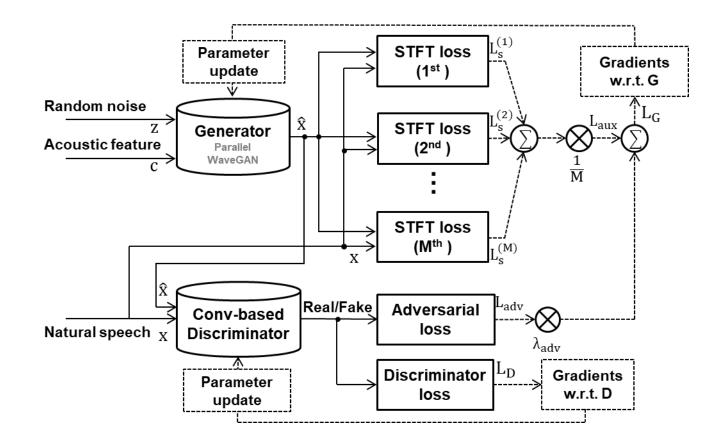
There are two loss functions

One penalizes large energy components

The other penalizes small energy components



Training method



Training method

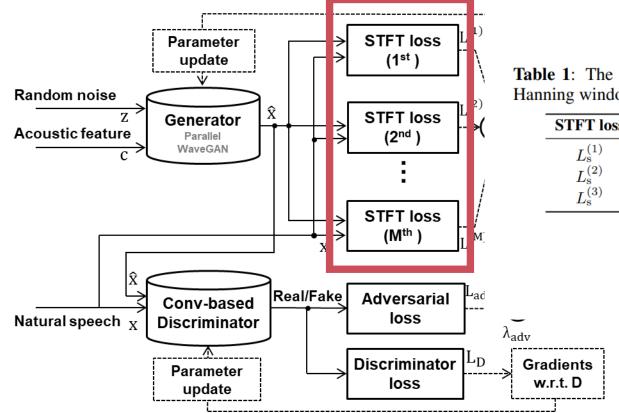


Table 1: The details of the multi-resolution STFT loss. A Hanning window was applied before the FFT process.

STFT loss	FFT size	Window size	Frame shift
$L_{\rm s}^{(1)}$	1024	600 (25 ms)	120 (5 ms)
$L_{\rm s}^{(2)}$	2048	1200 (50 ms)	240 (10 ms)
$L_{\rm s}^{(3)}$	512	240 (10 ms)	$50 \ (\approx 2 \ \mathrm{ms})$

PARALLEL WAVEGAN: A FAST WAVEFORM GENERATION MODEL BASED ON GENERATIVE ADVERSARIAL NETWORKS WITH MULTI-RESOLUTION SPECTROGRAM

*Ryuichi Yamamoto*¹, *Eunwoo Song*² and *Jae-Min Kim*²

¹LINE Corp., Tokyo, Japan. ²NAVER Corp., Seongnam, Korea

ABSTRACT

We propose Parallel WaveGAN, a distillation-free, fast, and smallfootprint waveform generation method using a generative adversarial network. In the proposed method, a non-autoregressive WaveNet is trained by jointly optimizing multi-resolution spectrogram and adversarial loss functions, which can effectively capture the time-frequency distribution of the realistic speech waveform. As our method does not require density distillation used in the conventional teacher-student framework, the entire model can be easily trained. Furthermore, our model is able to generate highfidelity speech even with its compact architecture. In particular, the proposed Parallel WaveGAN has only 1.44 M parameters and can generate 24 kHz speech waveform 28.68 times faster than realtime on a single GPU environment. Perceptual listening test results verify that our proposed method achieves 4.16 mean opinion score within a Transformer-based text-to-speech framework, which is comparative to the best distillation-based Parallel WaveNet system.

Evaluation results

Table 2: The inference speed and the MOS results with 95% confidence intervals: Acoustic features extracted from the recorded speech signal were used to compose the input auxiliary features. The evaluation was conducted on a server with a single NVIDIA Tesla V100 GPU. Note that the inference speed k means that the system was able to generate waveforms k times faster than real-time.

System index	Model	KLD-based distillation	STFT loss	Adversarial loss	Number of layers	Model size	Inference speed	MOS
System 1	WaveNet	-	-	-	24	3.81 M	0.32×10^{-2}	3.61±0.12
System 2	ClariNet	Yes	$L_{ m s}^{(1)}$	-	60	2.78 M	14.62	$3.88 {\pm} 0.11$
System 3	ClariNet	Yes	$L_{\rm s}^{(1)} + L_{\rm s}^{(2)} + L_{\rm s}^{(3)}$	-	60	2.78 M	14.62	$4.21 {\pm} 0.09$
System 4	ClariNet	Yes	$L_{\rm s}^{(1)} + L_{\rm s}^{(2)} + L_{\rm s}^{(3)}$	Yes	60	2.78 M	14.62	$4.21 {\pm} 0.09$
System 5	Parallel WaveGAN	-	$L_{ m s}^{(1)}$	Yes	30	1.44 M	28.68	$1.36{\pm}0.07$
System 6	Parallel WaveGAN	-	$L_{\rm s}^{(1)} + L_{\rm s}^{(2)} + L_{\rm s}^{(3)}$	Yes	30	1.44 M	28.68	$4.06{\pm}0.10$
System 7	Recording	-	-	-	-	-	-	$4.46{\pm}0.08$

Table 3: Training time comparison: All the experiments were conducted on a server with two NVIDIA Tesla V100 GPUs. Each vocoder model corresponds to System 1, 3, 4, and 6 described in Table 2, respectively. Note that the times for ClariNets include the training time for the teacher WaveNet.

Model	Training time (days)
WaveNet	7.4
ClariNet	12.7
ClariNet-GAN	13.5
Parallel WaveGAN (ours)	2.8

Table 4: MOS results with 95% confidence intervals: Acoustic features generated from the Transformer TTS model were used to compose the input auxiliary features.

Model	MOS
Transformer + WaveNet	3.33±0.11
Transformer + ClariNet	4.00 ± 0.10
Transformer + ClariNet-GAN	$4.14{\pm}0.10$
Transformer + Parallel WaveGAN (ours)	$4.16{\pm}0.09$
Recording	$4.46{\pm}0.08$

Evaluation results

Table 2: The inference speed and the MOS results with 95% confidence intervals: Acoustic features extracted from the recorded speech signal were used to compose the input auxiliary features. The evaluation was conducted on a server with a single NVIDIA Tesla V100 GPU. Note that the inference speed k means that the system was able to generate waveforms k times faster than real-time.

System index	Model	KLD-based distillation	STFT loss	Adversarial loss	Number layers	Model size	Inference speed	MOS
System 1	WaveNet	-	-	-	24	3.81 M	0.32×10^{-2}	3.61±0.12
System 2	ClariNet	Yes	$L_{ m s}^{(1)}$	-	60	2.78 M	14.62	$3.88 {\pm} 0.11$
System 3	ClariNet	Yes	$L_{\rm s}^{(1)} + L_{\rm s}^{(2)} + L_{\rm s}^{(3)}$	-	60	2.78 M	14.62	4.21±0.09
System 4	ClariNet	Yes	$L_{\rm s}^{(1)} + L_{\rm s}^{(2)} + L_{\rm s}^{(3)}$	Yes	60	2.78 M	14.62	4.21±0.09
System 5	Parallel WaveGAN	-	$L_{ m s}^{(1)}$	Yes	30	1.44 M	28.68	$1.36 {\pm} 0.07$
System 6	Parallel WaveGAN	-	$L_{\rm s}^{(1)} + L_{\rm s}^{(2)} + L_{\rm s}^{(3)}$	Yes	30	1.44 M	28.68	$4.06 {\pm} 0.10$
System 7	Recording	-	-	-	-			$4.46 {\pm} 0.08$

Table 3: Training time comparison: All the experiments were conducted on a server with two NVIDIA Tesla V100 GPUs. Each vocoder model corresponds to System 1, 3, 4, and 6 described in Table 2, respectively. Note that the times for ClariNets include the training time for the teacher WaveNet.

Model	Training time (days)
WaveNet	7.4
ClariNet	12.7
ClariNet-GAN	13.5
Parallel WaveGAN (ours)	2.8

Table 4: MOS results with 95% confidence intervals: Acoustic features generated from the Transformer TTS model were used to compose the input auxiliary features.

Model	MOS
Transformer + WaveNet	3.33 ± 0.11
Transformer + ClariNet	4.00 ± 0.10
Transformer + ClariNet-GAN	$4.14{\pm}0.10$
Transformer + Parallel WaveGAN (ours)	$4.16{\pm}0.09$
Recording	$4.46{\pm}0.08$

Evaluation results

Table 2: The inference speed and the MOS results with 95% confidence intervals: Acoustic features extracted from the recorded speech signal were used to compose the input auxiliary features. The evaluation was conducted on a server with a single NVIDIA Tesla V100 GPU. Note that the inference speed k means that the system was able to generate waveforms k times faster than real-time.

System index	Model	KLD-based distillation	STFT loss	Adversarial loss	Number of layers	Model size	Inference speed	MOS
System 1	WaveNet	-	-	-	24	3.81 M	0.32×10^{-2}	3.61±0.12
System 2	ClariNet	Yes	$L_{ m s}^{(1)}$	-	60	2.78 M	14.62	$3.88 {\pm} 0.11$
System 3	ClariNet	Yes	$L_{\rm s}^{(1)} + L_{\rm s}^{(2)} + L_{\rm s}^{(3)}$	-	60	2.78 M	14.62	$4.21 {\pm} 0.09$
System 4	ClariNet	Yes	$L_{\rm s}^{(1)} + L_{\rm s}^{(2)} + L_{\rm s}^{(3)}$	Yes	60	2.78 M	14.62	$4.21 {\pm} 0.09$
System 5	Parallel WaveGAN	-	$L_{ m s}^{(1)}$	Yes	30	1.44 M	28.68	$1.36{\pm}0.07$
System 6	Parallel WaveGAN	-	$L_{\rm s}^{(1)} + L_{\rm s}^{(2)} + L_{\rm s}^{(3)}$	Yes	30	1.44 M	28.68	$4.06{\pm}0.10$
System 7	Recording	-	-	-	-	-	-	$4.46{\pm}0.08$

Table 3: Training time comparison: All the experiments were conducted on a server with two NVIDIA Tesla V100 GPUs. Each vocoder model corresponds to System 1, 3, 4, and 6 described in Table 2, respectively. Note that the times for ClariNets include the training time for the teacher WaveNet.

Model	Training time (days)
WaveNet	7.4
ClariNet	12.7
ClariNet-GAN	13.5
Parallel WaveGAN (ours)	2.8

Table 4: MOS results with 95% confidence intervals: Acoustic features generated from the Transformer TTS model were used to compose the input auxiliary features.

Model	MOS
Transformer + WaveNet	3.33 ± 0.11
Transformer + ClariNet	4.00 ± 0.10
Transformer + ClariNet-GAN	$4.14{\pm}0.10$
Transformer + Parallel WaveGAN (ours)	$4.16{\pm}0.09$
Recording	$4.46{\pm}0.08$

Evaluation results

Table 2: The inference speed and the MOS results with 95% confidence intervals: Acoustic features extracted from the recorded speech signal were used to compose the input auxiliary features. The evaluation was conducted on a server with a single NVIDIA Tesla V100 GPU. Note that the inference speed k means that the system was able to generate waveforms k times faster than real-time.

System index	Model	KLD-based distillation	STFT loss	Adversarial loss	Number of layers	Model size	Inference speed	MOS
System 1	WaveNet	-	-	-	24	3.81 M	0.32×10^{-2}	3.61±0.12
System 2	ClariNet	Yes	$L_{ m s}^{(1)}$	-	60	2.78 M	14.62	$3.88 {\pm} 0.11$
System 3	ClariNet	Yes	$L_{\rm s}^{(1)} + L_{\rm s}^{(2)} + L_{\rm s}^{(3)}$	-	60	2.78 M	14.62	$4.21 {\pm} 0.09$
System 4	ClariNet	Yes	$L_{\rm s}^{(1)} + L_{\rm s}^{(2)} + L_{\rm s}^{(3)}$	Yes	60	2.78 M	14.62	$4.21 {\pm} 0.09$
System 5	Parallel WaveGAN	-	$L_{ m s}^{(1)}$	Yes	30	1.44 M	28.68	$1.36 {\pm} 0.07$
System 6	Parallel WaveGAN	-	$L_{\rm s}^{(1)} + L_{\rm s}^{(2)} + L_{\rm s}^{(3)}$	Yes	30	1.44 M	28.68	$4.06 {\pm} 0.10$
System 7	Recording	-	-	-	-	-	-	$4.46{\pm}0.08$

Table 3: Training time comparison: All the experiments were conducted on a server with two NVIDIA Tesla V100 GPUs. Each vocoder model corresponds to System 1, 3, 4, and 6 described in Table 2, respectively. Note that the times for ClariNets include the training time for the teacher WaveNet.

Model	Training time (days)
WaveNet	7.4
ClariNet	12.7
ClariNet-GAN	13.5
Parallel WaveGAN (ours)	2.8

Table 4: MOS results with 95% confidence intervals: Acoustic features generated from the Transformer TTS model were used to compose the input auxiliary features.

Model	MOS
Transformer + WaveNet	3.33±0.11
Transformer + ClariNet	4.00 ± 0.10
Transformer + ClariNet-GAN	$4.14{\pm}0.10$
Transformer + Parallel WaveGAN (urs) 4.16 ± 0.09
Recording	4.46±0.08

Demo samples

Open source (implemented by Tomoki Hayashi, Nagoya Univ.)

Parallel waveform synthesis

Parallel WaveGAN: Toward high-quality synthesis

Toward high-quality synthesis

IMPROVED PARALLEL WAVEGAN VOCODER WITH PERCEPTUALLY WEIGHTED SPECTROGRAM LOSS

Eunwoo Song¹, Ryuichi Yamamoto², Min-Jae Hwang³, Jin-Seob Kim¹, Ohsung Kwon¹, Jae-Min Kim¹

¹NAVER Corp., Seongnam, Korea ²LINE Corp., Tokyo, Japan ³Search Solutions Inc., Seongnam, Korea

ABSTRACT

This paper proposes a spectral-domain perceptual weighting technique for Parallel WaveGAN-based text-to-speech (TTS) systems. The recently proposed Parallel WaveGAN vocoder successfully generates waveform sequences using a fast non-autoregressive WaveNet model. By employing multiresolution short-time Fourier transform (MR-STFT) criteria with a generative adversarial network, the light-weight convolutional networks can be effectively trained without any distillation process. To further improve the vocoding performance, we propose the application of frequency-dependent weighting to the MR-STFT loss function. The proposed method penalizes perceptually-sensitive errors in the frequency domain; thus, the model is optimized toward reducing auditory noise in the synthesized speech. Subjective listening test results demonstrate that our proposed method achieves 4.21 and 4.26 TTS mean opinion scores for female and male Korean speakers, respectively.

"Weighted spectral Loss"

Toward high-quality synthesis

PARALLEL WAVEFORM SYNTHESIS BASED ON GENERATIVE ADVERSARIAL NETWORKS WITH VOICING-AWARE CONDITIONAL DISCRIMINATORS

*Ryuichi Yamamoto*¹, *Eunwoo Song*², *Min-Jae Hwang*³ and *Jae-Min Kim*²

¹LINE Corp., Tokyo, Japan ²NAVER Corp., Seongnam, Korea ³Search Solutions Inc., Seongnam, Korea

ABSTRACT

This paper proposes voicing-aware conditional discriminators for Parallel WaveGAN-based waveform synthesis systems. In this framework, we adopt a projection-based conditioning method that can significantly improve the discriminator's performance. Furthermore, the conventional discriminator is separated into two waveform discriminators for modeling voiced and unvoiced speech. As each discriminator learns the distinctive characteristics of the harmonic and noise components, respectively, the adversarial training process becomes more efficient, allowing the generator to produce more realistic speech waveforms. Subjective test results demonstrate the superiority of the proposed method over the conventional Parallel WaveGAN and WaveNet systems. In particular, our speaker-independently trained model within a FastSpeech 2 based text-to-speech framework achieves the mean opinion scores of 4.20, 4.18, 4.21, and 4.31 for four Japanese speakers, respectively.

"Voicing-aware discriminators"

Toward high-quality synthesis

High-fidelity Parallel WaveGAN with Multi-band Harmonic-plus-Noise Model

Min-Jae Hwang^{1*}, *Ryuichi Yamamoto*^{2*}, *Eunwoo Song*³ and *Jae-Min Kim*³

¹Search Solutions Inc., Seongnam, Korea ²LINE Corp., Tokyo, Japan ³NAVER Corp., Seongnam, Korea

Abstract

This paper proposes a multi-band harmonic-plus-noise (HN) Parallel WaveGAN (PWG) vocoder. To generate a highfidelity speech signal, it is important to well-reflect the harmonic-noise characteristics of the speech waveform in the time-frequency domain. However, it is difficult for the conventional PWG model to accurately match this condition, as its single generator inefficiently represents the complicated nature of harmonic-noise structures. In the proposed method, the HN WaveNet models are employed to overcome this limitation, which enable the separate generation of the harmonic and noise components of speech signals from the pitch-dependent sine wave and Gaussian noise sources, respectively. Then, the energy ratios between harmonic and noise components in multiple frequency bands (i.e., subband harmonicities) are predicted by an additional harmonicity estimator. Weighted by the estimated harmonicities, the gain of harmonic and noise components in each subband is adjusted, and finally mixed together to compose the full-band speech signal. Subjective evaluation results showed that the proposed method significantly improved the perceptual quality of the synthesized speech.

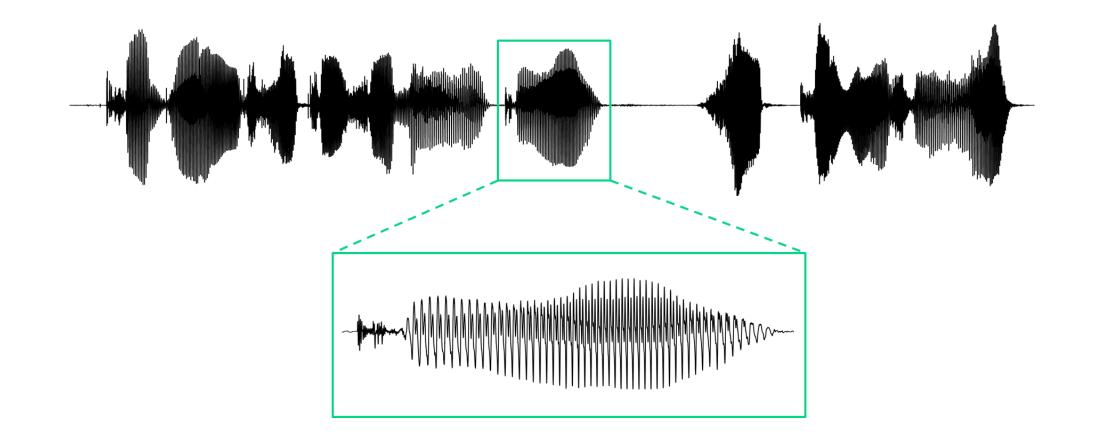
"Harmonic/noise generators"

Parallel waveform synthesis

Toward high-quality synthesis: Speech fundamentals

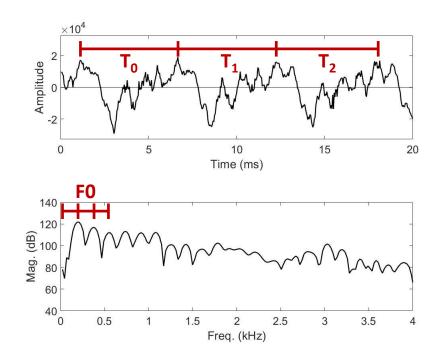
Speech fundamentals

Speech waveform



Speech fundamentals

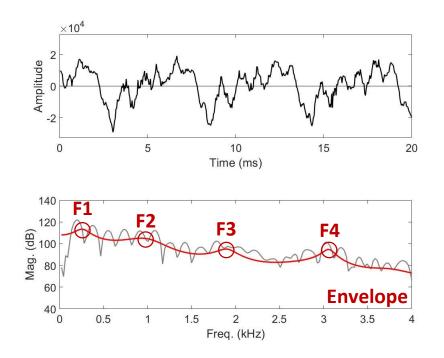
Pitch period



- Pitch period = $T_0 \approx T_1 \approx T_2$
 - Long-term period of speech (time-domain)
- Fundamental frequency (F0) = $1/T_0$
 - 1 / PP (frequency-domain)
 - Female voice : Ave. 200 Hz
 - Male voice : Ave. 100 Hz
- Harmonic spectrum
 - Multiple peaks of speech spectrum (interval=F0)
- Formant frequency (F1, F2, ...)
 - Vocal tract resonance

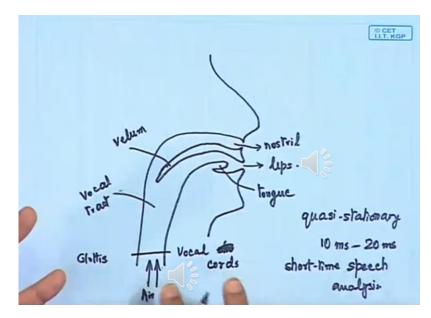
Speech fundamentals

Formant frequency



- Pitch period = $T_0 \approx T_1 \approx T_2$
 - Long-term period of speech (time-domain)
- Fundamental frequency (F0) = $1/T_0$
 - 1 / PP (frequency-domain)
 - Female voice : Ave. 200 Hz
 - Male voice : Ave. 100 Hz
- Harmonic spectrum
 - Multiple peaks of speech spectrum (interval=F0)
- Formant frequency (F1, F2, ...)
 - Vocal tract resonance

Speech production model

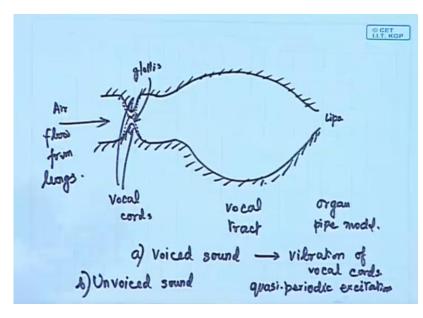


https://www.youtube.com/watch?v=X_JvfZiGEek

• Lung

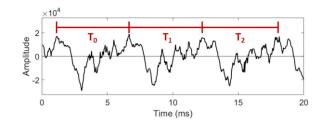
- Power supply
- Vocal source
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract filter
 - Shaping voice color

Speech production model

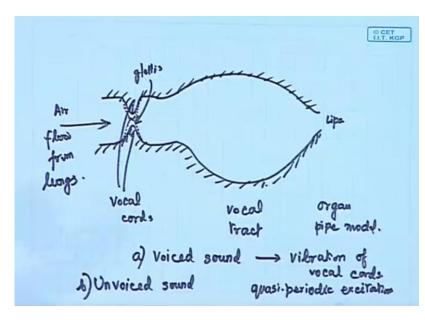


https://www.youtube.com/watch?v=X_JvfZiGEek

- Lung
 - Power supply
- Vocal source
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract filter
 - Shaping voice color



Speech production model



https://www.youtube.com/watch?v=X_JvfZiGEek

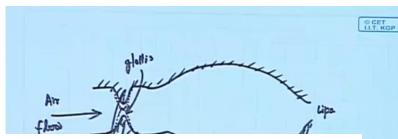
• Lung

- Power supply
- Vocal source
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract filter
 - Shaping voice color

Speech production model

13

alia

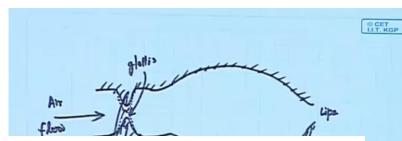


- Linear prediction
 - Weighted sum. of previous samples.
 - $\hat{s}(n) = \sum_{k=1}^{p} a(k) s(n-k)$
- Prediction error
 - Time-domain
 - $e(n) = s(n) \hat{s}(n) = s(n) \sum_{k=1}^{p} a(k)s(n-k)$
 - Minimizing mean square error
 - $\operatorname{argmin}_{a_k} E\left\{ \left\| s(n) \sum_{k=1}^p a(k) s(n-k) \right\|^2 \right\}$

- Power supply
- Vocal source
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract filter
 - Shaping voice color

Speech production model

ls.



arz

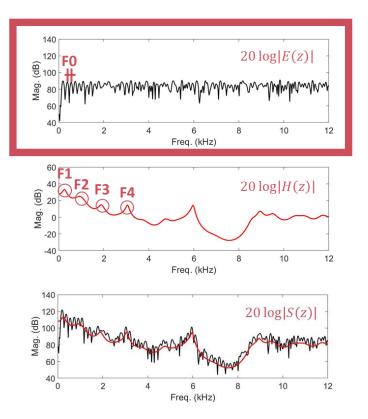
LPC filter

- Linear prediction
 - Weighted sum. of previous samples.
 - $\hat{s}(n) = \sum_{k=1}^{p} a(k) s(n-k)$
- Prediction error
 - Frequency-domain

•
$$S(z) = E(z)H(z) = E(z)$$
 $\frac{1-\Sigma}{1-\Sigma}$

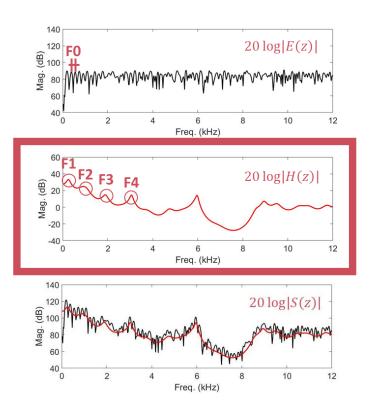
- Power supply
- Vocal source
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract filter
 - Shaping voice color

Speech production model



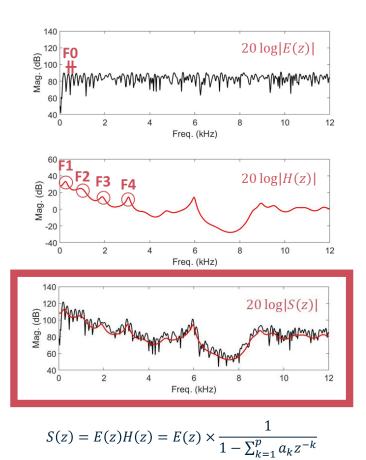
- Lung
 - Power supply
- Vocal source
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract filter
 - Shaping voice color

Speech production model



- Lung
 - Power supply
- Vocal source
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract filter
 - Shaping voice color

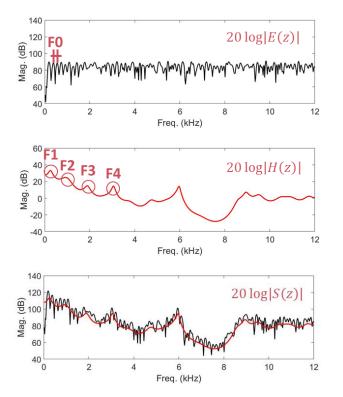
Speech production model



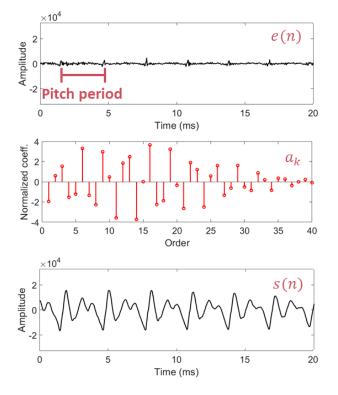
• Lung

- Power supply
- Vocal source
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract filter
 - Shaping voice color

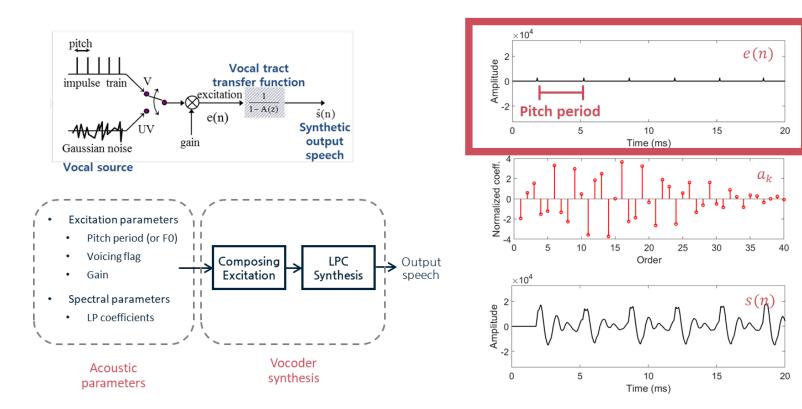
Speech production model



\rightarrow Time-domain



Parametric LPC vocoder



Parallel waveform synthesis

Toward high-quality synthesis: Perceptually weighted spectral loss

Combining LPC synthesis filter with neural excitation vocoders

Speech production model

- Vocal source → Excitation Voiced sound: quasi-periodic Unvoiced sound: aperiodic
- Vocal tract → LPC synthesis Shaping voice color

Combining LPC synthesis filter with neural excitation vocoders

WaveNet + LPC filter = ExcitNet, LP-WaveNet, ...

WaveRNN + LPC filter = LPCNet

Combining LPC synthesis filter with neural excitation vocoders

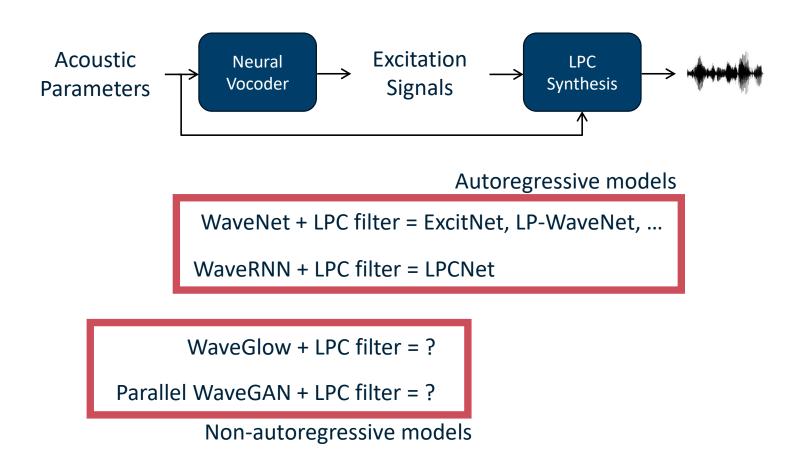
WaveNet + LPC filter = ExcitNet, LP-WaveNet, ...

WaveRNN + LPC filter = LPCNet

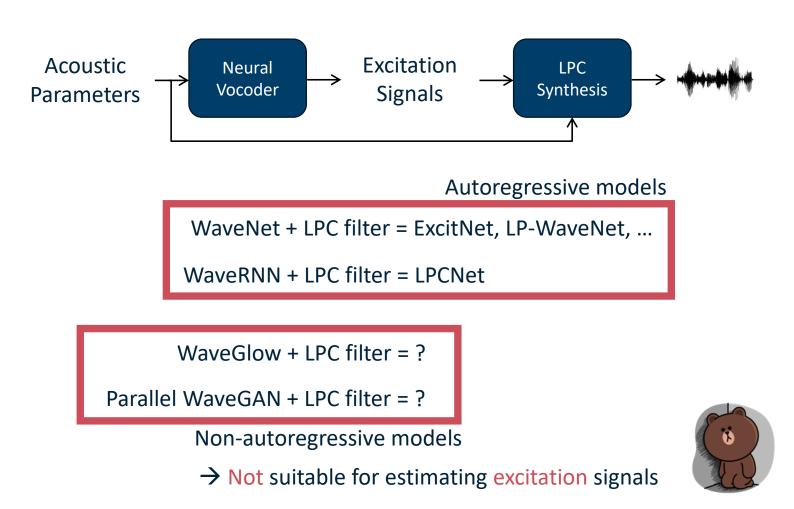
WaveGlow + LPC filter = ?

Parallel WaveGAN + LPC filter = ?

Combining LPC synthesis filter with neural excitation vocoders



Combining LPC synthesis filter with neural excitation vocoders



Recall: Parallel WaveGAN

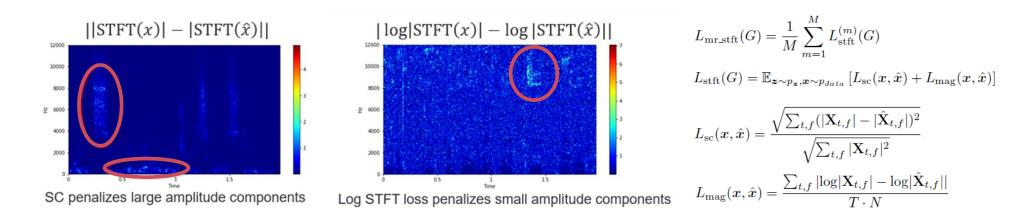
- 1. Removed the teacher-student distillation process
- 2. Improved synthetic quality by using the adversarial training method
- 3. Further improved its quality by introducing the multi-resolution STFT loss

STFT is calculated in different T/F resolutions

There are two loss functions

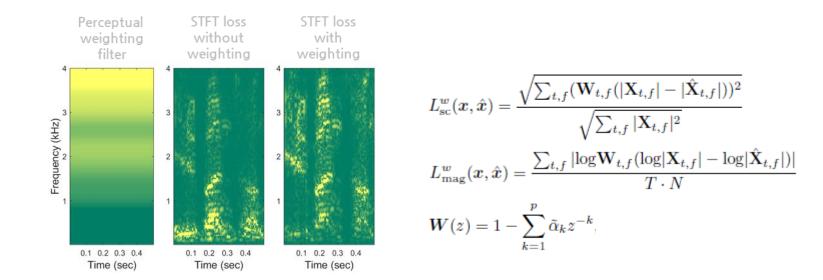
One penalizes large energy components

The other penalizes small energy components



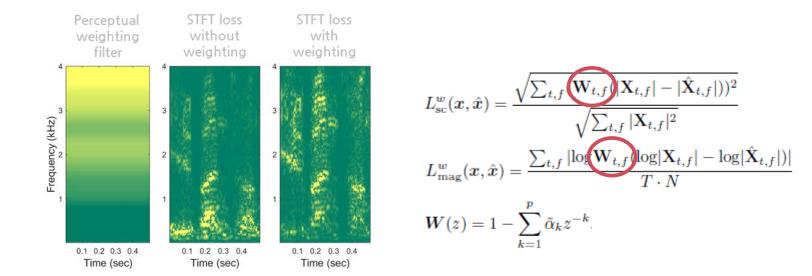
- 1. Removed the teacher-student distillation process
- 2. Improved synthetic quality by using the adversarial training method
- 3. Further improved its quality by introducing the multi-resolution STFT loss

+ Applying perceptual weighting filter



- 1. Removed the teacher-student distillation process
- 2. Improved synthetic quality by using the adversarial training method
- 3. Further improved its quality by introducing the multi-resolution STFT loss
 - + Applying perceptual weighting filter

This penalizes perceptually-sensitive errors in the freq. domain



Evaluation results

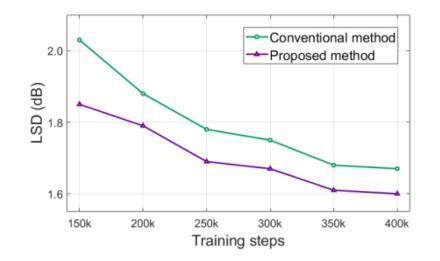


Fig. 2: Log-spectral distance (LSD; dB) between the original and generated speech signals

Table 4: Naturalness MOS test results with 95% confidence intervals for the TTS systems with respect to the different vocoding models: The MOS results for the proposed system are in bold font. The KRF and KRM denote Korean female and male speakers, respectively.

Index	Model	KRF	KRM
Test 1	WaveNet	$3.64{\pm}0.14$	3.60 ± 0.13
Test 2	WaveNet + NS	$4.36 {\pm} 0.11$	$4.32 {\pm} 0.10$
Test 3	Parallel WaveGAN	$4.02 {\pm} 0.10$	4.11 ± 0.11
Test 4	Parallel WaveGAN + NS	$2.34{\pm}0.10$	$1.72 {\pm} 0.09$
Test 5	Parallel WaveGAN + PW	4.26±0.10	4.21±0.10
Test 6	Raw	$4.64 {\pm} 0.07$	$4.59 {\pm} 0.09$

Acoustic model: Tacotron 2

NS: Noise-shaping (similar to LPC synthesis)

Evaluation results



Fig. 2: Log-spectral distance (LSD; dB) between the original and generated speech signals

Table 4: Naturalness MOS test results with 95% confidence intervals for the TTS systems with respect to the different vocoding models: The MOS results for the proposed system are in bold font. The KRF and KRM denote Korean female and male speakers, respectively.

Index	Model	KRF	KRM
Test 1	WaveNet	$3.64{\pm}0.14$	3.60±0.13
Test 2	WaveNet + NS	$4.36 {\pm} 0.11$	4.32 ± 0.10
Test 3	Parallel WaveGAN	4.02 ± 0.10	4.11 ± 0.11
Test 4	Parallel WaveGAN + NS	$2.34{\pm}0.10$	1.72 ± 0.09
Test 5	Parallel WaveGAN + PW	4.26±0.10	$4.21{\pm}0.10$
Test 6	Raw	$4.64 {\pm} 0.07$	4.59±0.09

Acoustic model: Tacotron 2

NS: Noise-shaping (similar to LPC synthesis)

Evaluation results

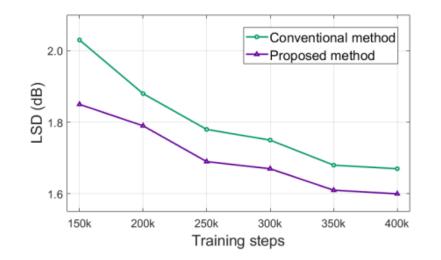


Fig. 2: Log-spectral distance (LSD; dB) between the original and generated speech signals

Table 4: Naturalness MOS test results with 95% confidence intervals for the TTS systems with respect to the different vocoding models: The MOS results for the proposed system are in bold font. The KRF and KRM denote Korean female and male speakers, respectively.

	Index	Model	KRF	KRM
-	Test 1	WaveNet	$3.64{\pm}0.14$	3.60±0.13
	Test 2	WaveNet + NS	4.36 ± 0.11	432 ± 010
Γ	Test 3	Parallel WaveGAN	$4.02 {\pm} 0.10$	4.11±0.11
L	Test 4	Parallel WaveGAN + NS	$2.34{\pm}0.10$	1.72 ± 0.09
	Test 5	Parallel WaveGAN + PW	$4.26{\pm}0.10$	4.21 ± 0.10
-	Test 6	Raw	$4.64 {\pm} 0.07$	4.59±0.09

Acoustic model: Tacotron 2

NS: Noise-shaping (similar to LPC synthesis)

Perceptually weighted spectral loss

Evaluation results

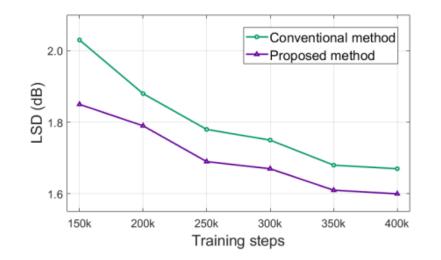


Fig. 2: Log-spectral distance (LSD; dB) between the original and generated speech signals

Table 4: Naturalness MOS test results with 95% confidence intervals for the TTS systems with respect to the different vocoding models: The MOS results for the proposed system are in bold font. The KRF and KRM denote Korean female and male speakers, respectively.

_	Index	Model	KRF	KRM
_	Test 1	WaveNet	$3.64{\pm}0.14$	3.60±0.13
	Test 2	WaveNet + NS	4.36 ± 0.11	432 ± 010
Г	Test 3	Parallel WaveGAN	$4.02 {\pm} 0.10$	4.11±0.11
	Test 4	Parallel WaveGAN + NS	$2.34{\pm}0.10$	$1.72{\pm}0.09$
	Test 5	Parallel WaveGAN + PW	4.26±0.10	4.21±0.10
	Test 6	Raw	$4.64 {\pm} 0.07$	4.59 ± 0.09

Acoustic model: Tacotron 2

NS: Noise-shaping (similar to LPC synthesis)

Perceptually weighted spectral loss

Demo samples

E. Song, et al., "Improved Parallel WaveGAN with perceptually weighted spectrogram loss," Proc. SLT, 2021, pp. 470-476.

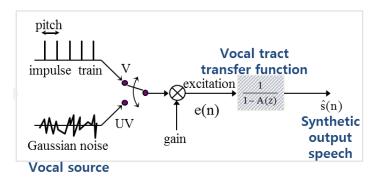
Parallel waveform synthesis

Toward high-quality synthesis: Voicing-aware discriminators

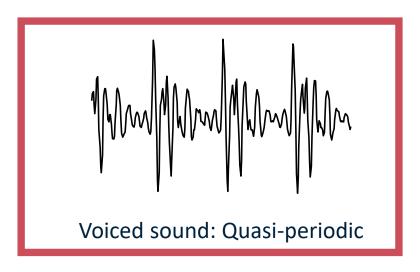
Voiced/unvoiced sounds

Voiced sound: Quasi-periodic

Unvoiced sound: aperiodic



Voiced/unvoiced sounds



Unvoiced sound: aperiodic

V: Characterized by slowly evolving harmonic components

Discriminator should cover long-term variations of voiced sound

Voiced/unvoiced sounds

Voiced sound: Quasi-periodic



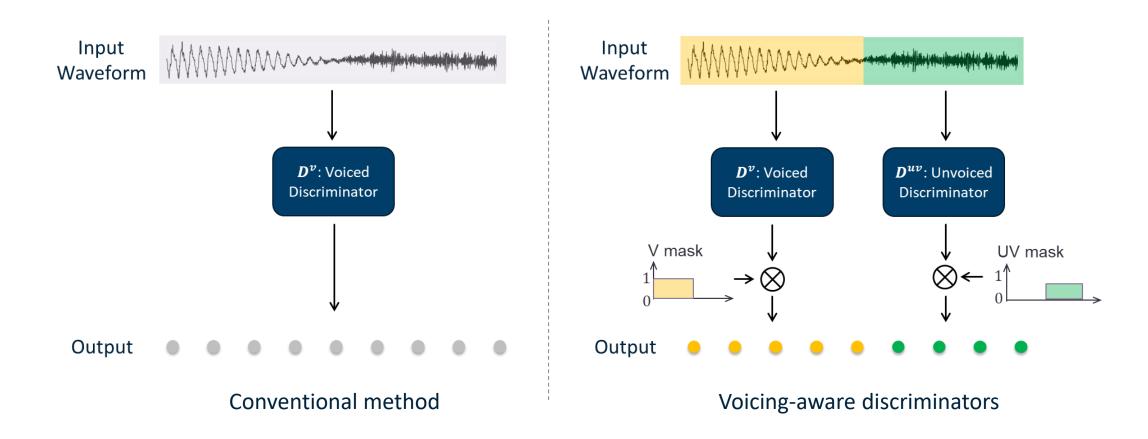
V: Characterized by slowly evolving harmonic components

Discriminator should cover long-term variations of voiced sound

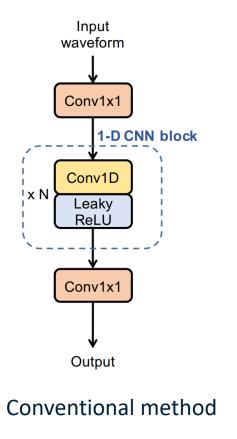
UV: Characterized by rapidly evolving noise components

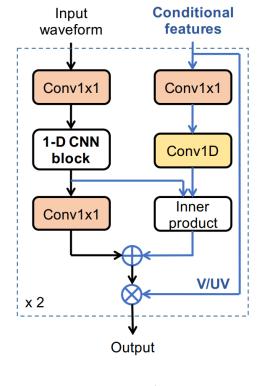
Discriminator should catch short-term variations of unvoiced sound

Voiced/unvoiced masking



Voiced/unvoiced masking





Voicing-aware discriminators

T. Miyato, et al., "cGANs with projection discriminator," Proc. ICLR, 2018.

Receptive field

Table 1. The dilation factors and receptive fields in the 1-D CNN blocks of the voicing-aware discriminators.

Discriminator	Dilation factors	Receptive field
$D^{\mathbf{v}}$	[1, 2, 4, 8, 16, 32]	127
D^{uv}	[1, 1, 1, 1, 1, 1]	13

Voiced discriminator

Dilated convolution with long receptive field Covering long-term variations of voiced sound

Unvoiced discriminator

Non-dilated convolution with short receptive field Catching short-term variations of unvoiced sound

Receptive field

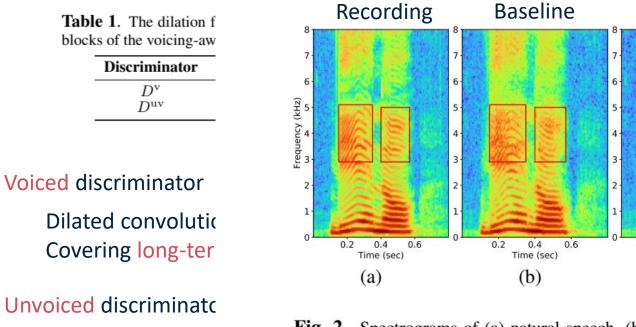


Fig. 2. Spectrograms of (a) natural speech, (b) generated speech from the conventional Parallel WaveGAN (S2), and (c) generated speech from the proposed Parallel WaveGAN (S7). As demonstrated in rectangle areas, our proposed method is able to model spectral harmonics more accurately.

Proposed

0.2

0.4

Time (sec)

(c)

0.6

R. Yamamoto, et al., "Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators," Proc. ICASSP, 2021, pp. 6039-6043.

Non-dilated conve

Catching short-te

Evaluation results

Table 2. MOS test results with 95% confidence intervals in analysis/synthesis: The speech samples were generated using the acoustic features extracted from the recorded speech. PWG denotes Parallel WaveGAN for short. Note that systems S2 and S3 used D^{v} as the primary discriminator. All the models were trained in a speaker-independent manner.

System	Model	Voiced	Unvoiced	Discriminator	MOS			
System	Wodel	segments	segments	conditioning	F1	F2	M 1	M2
S 1	WaveNet	-	-	-	$3.64{\pm}0.12$	3.83 ± 0.11	3.33 ± 0.12	3.13 ± 0.11
S 2	PWG	-	-	-	3.61 ± 0.11	$3.55 {\pm} 0.11$	3.57 ± 0.12	3.61 ± 0.11
S 3	PWG-cGAN-D	-	-	Yes	$4.04 {\pm} 0.10$	$3.95 {\pm} 0.10$	3.91 ± 0.11	$3.97 {\pm} 0.10$
S 4	PWG-V/UV-D	$D^{\mathbf{v}}$	$D^{\mathbf{v}}$	Yes	$3.60 {\pm} 0.12$	$3.59 {\pm} 0.11$	$3.34{\pm}0.11$	$3.48 {\pm} 0.11$
S 5	PWG-V/UV-D	D^{uv}	$D^{\mathbf{v}}$	Yes	3.67 ± 0.11	$3.48 {\pm} 0.11$	3.29 ± 0.12	$3.38 {\pm} 0.11$
S 6	PWG-V/UV-D	D^{uv}	D^{uv}	Yes	3.77 ± 0.11	$3.88 {\pm} 0.10$	3.57 ± 0.11	$3.34{\pm}0.11$
S7	PWG-V/UV-D (proposed)	$D^{\mathbf{v}}$	D^{uv}	Yes	$\textbf{4.11}{\pm 0.10}$	$4.05{\pm}0.10$	$\textbf{4.04}{\pm 0.10}$	$\textbf{4.08}{\pm 0.10}$
R 1	Recordings	-	-	-	$4.63 {\pm} 0.08$	$4.67 {\pm} 0.07$	4.61 ± 0.08	$4.64 {\pm} 0.08$

Table 3. MOS test results with 95% confidence intervals: Acoustic features generated from the FastSpeech 2 acoustic model were used to compose the input auxiliary features.

Cristom	Model	MOS					
System		F1	F2	M 1	M2		
S 1	FastSpeech 2 + WaveNet	$3.90{\pm}0.11$	3.81 ± 0.10	3.43 ± 0.11	3.09±0.10		
S 2	FastSpeech 2 + PWG	$3.76 {\pm} 0.11$	3.62 ± 0.11	$3.63 {\pm} 0.11$	$3.78 {\pm} 0.10$		
S 3	FastSpeech 2 + PWG-cGAN-D	$4.02 {\pm} 0.10$	$4.03 {\pm} 0.10$	$4.16 {\pm} 0.10$	$4.06 {\pm} 0.10$		
S7	FastSpeech 2 + PWG-V/UV-D (proposed)	$\textbf{4.20{\pm}0.10}$	$\textbf{4.18}{\pm 0.09}$	$4.21{\pm}0.09$	4.31±0.09		
R1	Recordings	$4.63 {\pm} 0.08$	$4.67 {\pm} 0.07$	4.61 ± 0.08	4.64 ± 0.08		

Evaluation results

Table 2. MOS test results with 95% confidence intervals in analysis/synthesis: The speech samples were generated using the acoustic features extracted from the recorded speech. PWG denotes Parallel WaveGAN for short. Note that systems S2 and S3 used D^{v} as the primary discriminator. All the models were trained in a speaker-independent manner.

System	Model	Voiced	Unvoiced	Discriminator	MOS			
System	Wodel	segments	segments	conditioning	F1	F2	M 1	M2
S 1	WaveNet	-	-	-	$3.64{\pm}0.12$	3.83 ± 0.11	3.33 ± 0.12	3.13 ± 0.11
S 2	PWG	-	-	-	3.61 ± 0.11	$3.55 {\pm} 0.11$	$3.57 {\pm} 0.12$	3.61 ± 0.11
S 3	PWG-cGAN-D	-	-	Yes	$4.04 {\pm} 0.10$	$3.95 {\pm} 0.10$	3.91 ± 0.11	$3.97 {\pm} 0.10$
S 4	PWG-V/UV-D	$D^{\mathbf{v}}$	$D^{\mathbf{v}}$	Yes	$3.60 {\pm} 0.12$	$3.59 {\pm} 0.11$	$3.34{\pm}0.11$	$3.48 {\pm} 0.11$
S 5	PWG-V/UV-D	D^{uv}	D^{v}	Yes	$3.67 {\pm} 0.11$	$3.48 {\pm} 0.11$	$3.29 {\pm} 0.12$	$3.38 {\pm} 0.11$
S 6	PWG-V/UV-D	D^{uv}	D^{uv}	Yes	3.77 ± 0.11	$3.88 {\pm} 0.10$	3.57 ± 0.11	$3.34{\pm}0.11$
S7	PWG-V/UV-D (proposed)	$D^{\mathbf{v}}$	D^{uv}	Yes	4.11±0.10	$4.05{\pm}0.10$	$\textbf{4.04}{\pm 0.10}$	$\textbf{4.08}{\pm 0.10}$
R1	Recordings	-	-	-	$4.63 {\pm} 0.08$	$4.67 {\pm} 0.07$	4.61 ± 0.08	$4.64 {\pm} 0.08$

Table 3. MOS test results with 95% confidence intervals: Acoustic features generated from the FastSpeech 2 acoustic model were used to compose the input auxiliary features.

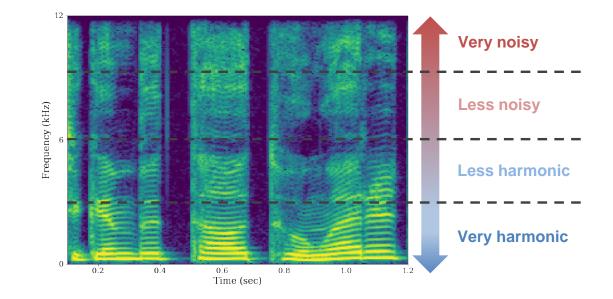
Swatam	Madal	MOS					
System	Model	F1	F2	M1	M2		
S1	FastSpeech 2 + WaveNet	$3.90{\pm}0.11$	3.81 ± 0.10	3.43 ± 0.11	3.09 ± 0.10		
S 2	FastSpeech 2 + PWG	$3.76 {\pm} 0.11$	3.62 ± 0.11	$3.63 {\pm} 0.11$	$3.78 {\pm} 0.10$		
S 3	FastSpeech 2 + PWG-cGAN-D	4.02 ± 0.10	$4.03 {\pm} 0.10$	4.16 ± 0.10	$4.06 {\pm} 0.10$		
S7	FastSpeech 2 + PWG-V/UV-D (proposed)	$\textbf{4.20}{\pm 0.10}$	$\textbf{4.18}{\pm 0.09}$	4.21±0.09	4.31±0.09		
R1	Recordings	$4.63 {\pm} 0.08$	$4.67 {\pm} 0.07$	$4.61 {\pm} 0.08$	$4.64 {\pm} 0.08$		

Demo samples

Parallel waveform synthesis

Toward high-quality synthesis: Harmonic/noise generators

Harmonicity analysis in the frequency domain



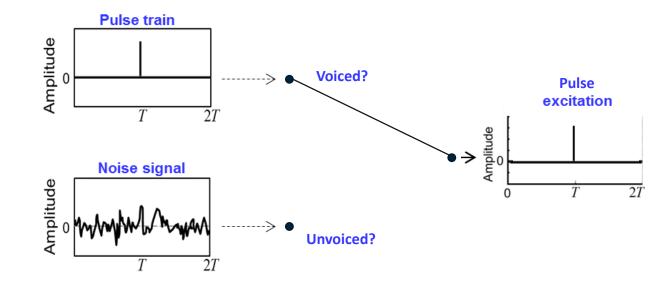
Low frequency region

Harmonic characteristics > Noise characteristics

High frequency region

Harmonic characteristics < Noise characteristics

Parametric LPC vocoder (binary decision)



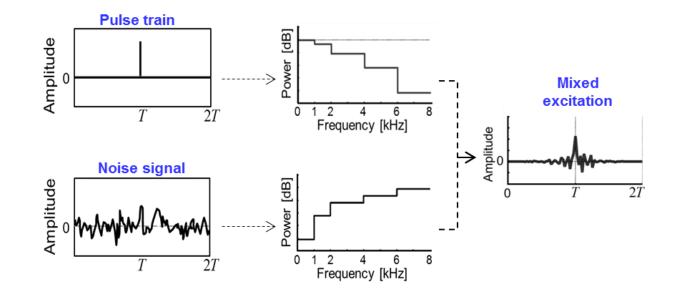
Low frequency region

Harmonic characteristics > Noise characteristics

High frequency region

Harmonic characteristics < Noise characteristics

Mixed excitation-based parametric vocoder



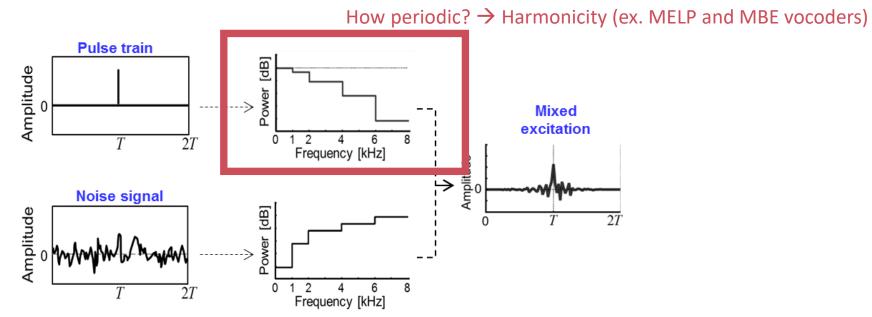
Low frequency region

Harmonic characteristics > Noise characteristics

High frequency region

Harmonic characteristics < Noise characteristics

Mixed excitation-based parametric vocoder



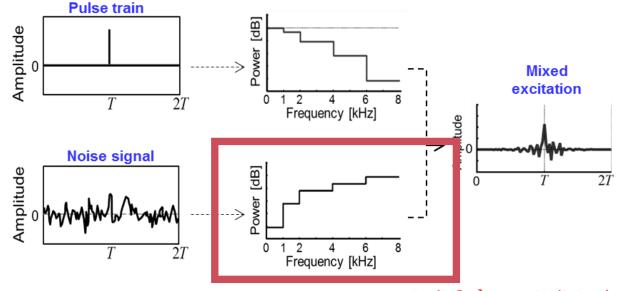
Low frequency region

Harmonic characteristics > Noise characteristics

High frequency region

Harmonic characteristics < Noise characteristics

Mixed excitation-based parametric vocoder



How aperiodic? \rightarrow aperiodicity (ex. STRAIGHT and WORLD vocoders)

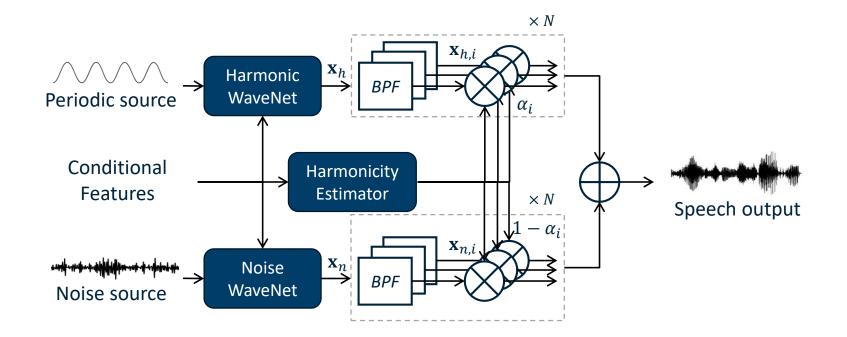
Low frequency region

Harmonic characteristics > Noise characteristics

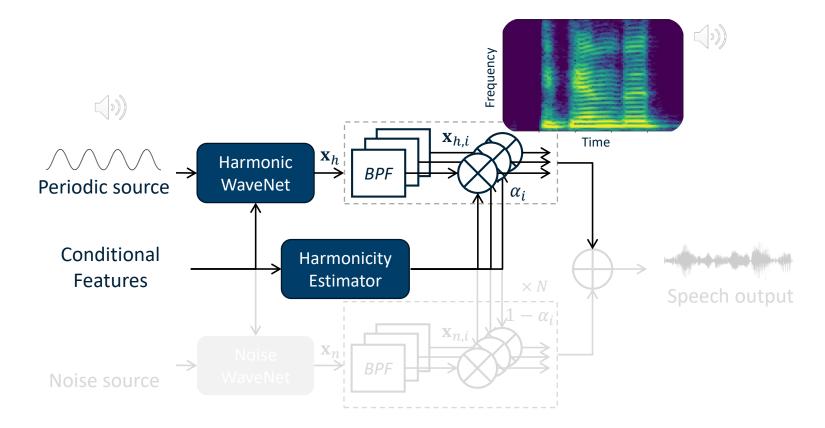
High frequency region

Harmonic characteristics < Noise characteristics

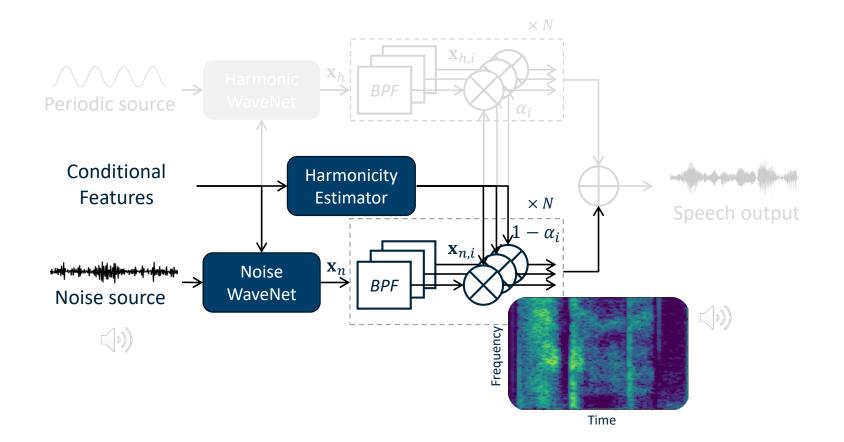
Model architecture



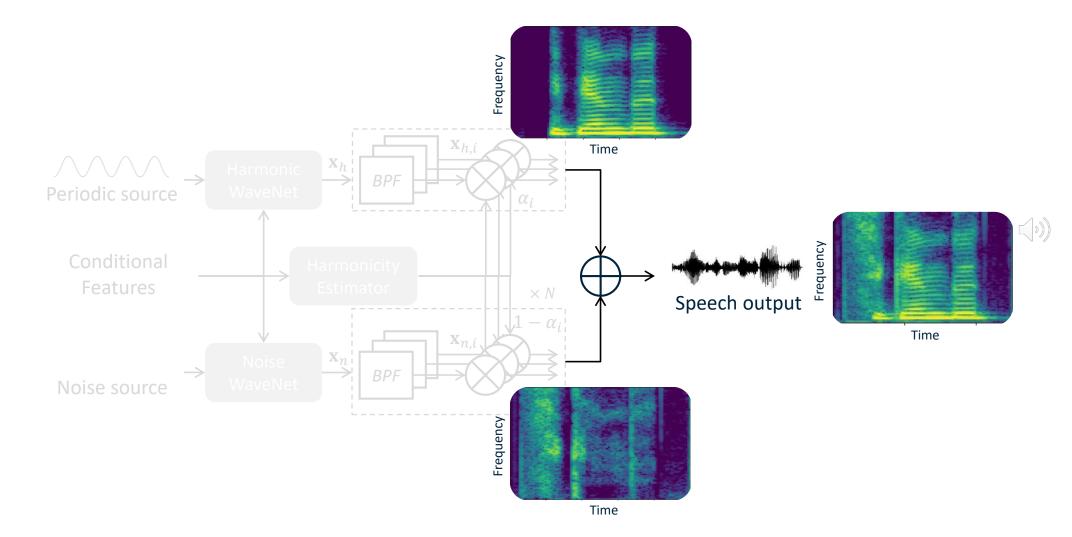
Model architecture



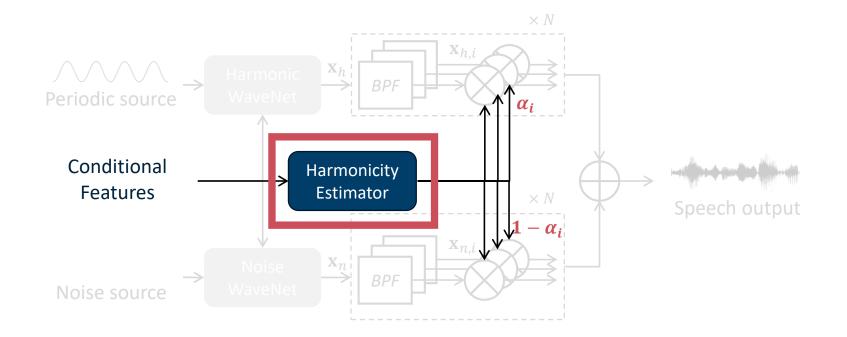
Model architecture



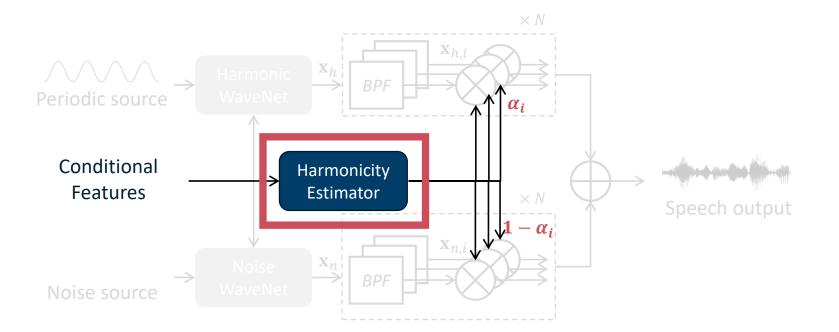
Model architecture



Model architecture

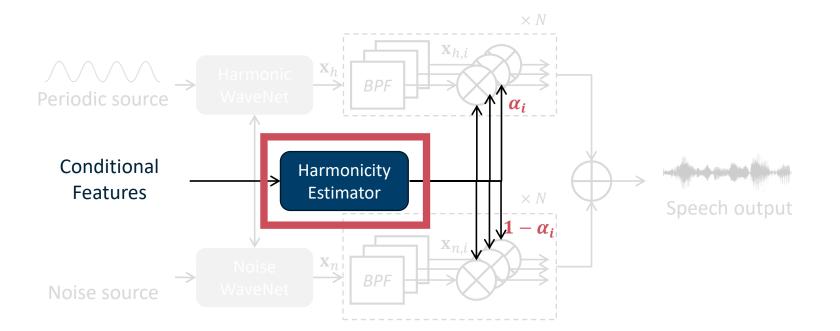


Model architecture



Parametric vocoders: Harmonicity has been estimated by rule-based analysis methods

Model architecture



Parametric vocoders: Harmonicity has been estimated by rule-based analysis methods Alternatively, we design learnable harmonicities optimized CNN blocks with input condition

Evaluation results

Table 1. The model size, inference speed, and MOS results with 95% confidence intervals: Acoustic features extracted from the recorded speech signal were used to compose the input acoustic features. The MOS results for highest score is in bold font.

Label	Model	Use of HN model	Input signals for H-WaveNet	Type of HN model	Model size (M)	Inference speed	MOS
S 1	WaveNet [21]	_	_	_	3.81	0.34×10^{-2}	4.22 ± 0.12
S 2	PWG [7]	_	_	_	0.94	50.38	3.46 ± 0.37
S 3	HN-PWG w/o noise [16]	Yes	Sine $+ V/UV$	Full-band	0.94	47.91	4.02 ± 0.14
S 4	HN-PWG	Yes	Sine + noise + V/UV	Full-band	0.94	47.93	4.18 ± 0.15
S5	Multi-band HN-PWG	Yes	Sine + noise + V/UV	Multi-band	0.99	47.87	4.29 ± 0.12
S 6	Recordings	_	_	_	_	_	4.41 ± 0.12

Si: i^{th} system; HN: harmonic-plus-noise; PWG: Parallel WaveGAN; H-WaveNet: harmonic WaveNet; V/UV: voicing flags upsampled from frame-level to sample-level. Note that inference speed, k, indicates that a system was able to generate waveforms k times faster than real-time. This evaluation was conducted on a server with a single NVIDIA Tesla V100 GPU.

Table 2. Subjective MOS test results with 95% confidence intervals for the TTS systems with respect to the different vocoding models. The MOS results for highest score is in bold

font.

Label	Model	MOS
S-T1	WaveNet [21]	4.03 ± 0.19
S-T2	PWG [7]	3.56 ± 0.28
S-T3	HN-PWG w/o noise	2.60 ± 0.22
S-T4	HN-PWG	4.01 ± 0.17
S-T5	Multi-band HN-PWG	4.03 ± 0.16
S 6	Recordings	4.41 ± 0.12

S-T*i*: i^{in} system that generates speech waveform from the acoustic features predicted by TTS model.

Acoustic model: Tacotron 2

Parallel waveform synthesis

Summary

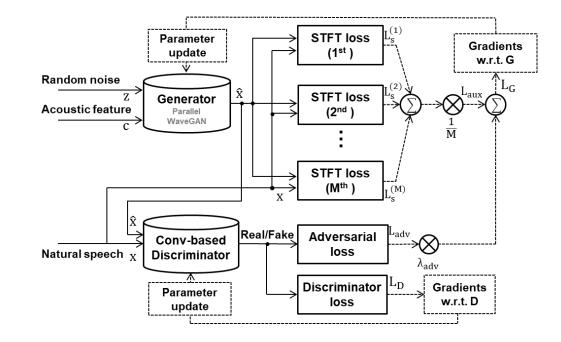
PARALLEL WAVEGAN: A FAST WAVEFORM GENERATION MODEL BASED ON GENERATIVE ADVERSARIAL NETWORKS WITH MULTI-RESOLUTION SPECTROGRAM

*Ryuichi Yamamoto*¹, *Eunwoo Song*² and *Jae-Min Kim*²

¹LINE Corp., Tokyo, Japan. ²NAVER Corp., Seongnam, Korea

ABSTRACT

We propose Parallel WaveGAN, a distillation-free, fast, and smallfootprint waveform generation method using a generative adversarial network. In the proposed method, a non-autoregressive WaveNet is trained by jointly optimizing multi-resolution spectrogram and adversarial loss functions, which can effectively capture the time-frequency distribution of the realistic speech waveform. As our method does not require density distillation used in the conventional teacher-student framework, the entire model can be easily trained. Furthermore, our model is able to generate highfidelity speech even with its compact architecture. In particular, the proposed Parallel WaveGAN has only 1.44 M parameters and can generate 24 kHz speech waveform 28.68 times faster than realtime on a single GPU environment. Perceptual listening test results verify that our proposed method achieves 4.16 mean opinion score within a Transformer-based text-to-speech framework, which is comparative to the best distillation-based Parallel WaveNet sys-



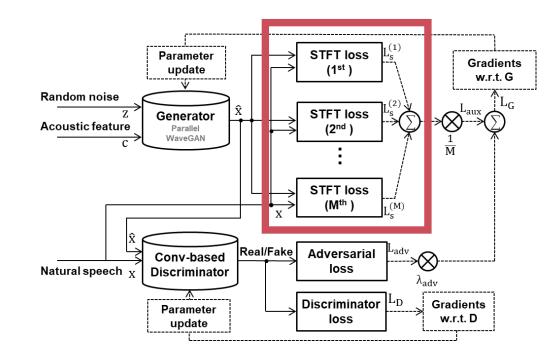
IMPROVED PARALLEL WAVEGAN VOCODER WITH PERCEPTUALLY WEIGHTED SPECTROGRAM LOSS

Eunwoo Song¹, Ryuichi Yamamoto², Min-Jae Hwang³, Jin-Seob Kim¹, Ohsung Kwon¹, Jae-Min Kim¹

¹NAVER Corp., Seongnam, Korea ²LINE Corp., Tokyo, Japan ³Search Solutions Inc., Seongnam, Korea

ABSTRACT

This paper proposes a spectral-domain perceptual weighting technique for Parallel WaveGAN-based text-to-speech (TTS) systems. The recently proposed Parallel WaveGAN vocoder successfully generates waveform sequences using a fast non-autoregressive WaveNet model. By employing multiresolution short-time Fourier transform (MR-STFT) criteria with a generative adversarial network, the light-weight convolutional networks can be effectively trained without any distillation process. To further improve the vocoding performance, we propose the application of frequency-dependent weighting to the MR-STFT loss function. The proposed method penalizes perceptually-sensitive errors in the frequency domain; thus, the model is optimized toward reducing auditory noise in the synthesized speech. Subjective listening test results demonstrate that our proposed method achieves 4.21 and 4.26 TTS mean opinion scores for female and male Korean speakers, respectively.



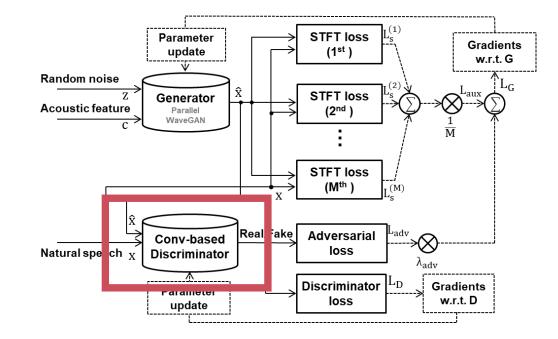
PARALLEL WAVEFORM SYNTHESIS BASED ON GENERATIVE ADVERSARIAL NETWORKS WITH VOICING-AWARE CONDITIONAL DISCRIMINATORS

*Ryuichi Yamamoto*¹, *Eunwoo Song*², *Min-Jae Hwang*³ and *Jae-Min Kim*²

¹LINE Corp., Tokyo, Japan ²NAVER Corp., Seongnam, Korea ³Search Solutions Inc., Seongnam, Korea

ABSTRACT

This paper proposes voicing-aware conditional discriminators for Parallel WaveGAN-based waveform synthesis systems. In this framework, we adopt a projection-based conditioning method that can significantly improve the discriminator's performance. Furthermore, the conventional discriminator is separated into two waveform discriminators for modeling voiced and unvoiced speech. As each discriminator learns the distinctive characteristics of the harmonic and noise components, respectively, the adversarial training process becomes more efficient, allowing the generator to produce more realistic speech waveforms. Subjective test results demonstrate the superiority of the proposed method over the conventional Parallel WaveGAN and WaveNet systems. In particular, our speaker-independently trained model within a FastSpeech 2 based text-to-speech framework achieves the mean opinion scores of 4.20, 4.18, 4.21, and 4.31 for four Japanese speakers, respectively.



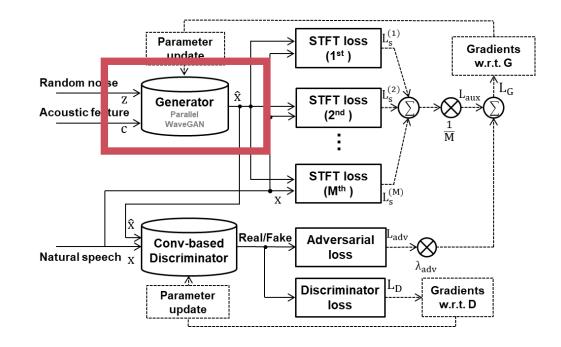
High-fidelity Parallel WaveGAN with Multi-band Harmonic-plus-Noise Model

Min-Jae Hwang^{1*}, *Ryuichi Yamamoto*^{2*}, *Eunwoo Song*³ and *Jae-Min Kim*³

¹Search Solutions Inc., Seongnam, Korea ²LINE Corp., Tokyo, Japan ³NAVER Corp., Seongnam, Korea

Abstract

This paper proposes a multi-band harmonic-plus-noise (HN) Parallel WaveGAN (PWG) vocoder. To generate a highfidelity speech signal, it is important to well-reflect the harmonic-noise characteristics of the speech waveform in the time-frequency domain. However, it is difficult for the conventional PWG model to accurately match this condition, as its single generator inefficiently represents the complicated nature of harmonic-noise structures. In the proposed method, the HN WaveNet models are employed to overcome this limitation, which enable the separate generation of the harmonic and noise components of speech signals from the pitch-dependent sine wave and Gaussian noise sources, respectively. Then, the energy ratios between harmonic and noise components in multiple frequency bands (i.e., subband harmonicities) are predicted by an additional harmonicity estimator. Weighted by the estimated harmonicities, the gain of harmonic and noise components in each subband is adjusted, and finally mixed together to compose the full-band speech signal. Subjective evaluation results showed that the proposed method significantly improved the perceptual quality of the synthesized speech.



gregorio.song@gmail.com

