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Speech synthesis and its applications

1. Speech analysis: Mel-spectrogram
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Speech analysis

Speech waveform
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Speech analysis

Speech waveform

FO: Fundamental frequency
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Speech waveform
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Speech synthesis and its applications

2. Acoustic models: From text to acoustic parameters
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Statistical parametric speech synthesis

STATISTICAL PARAMETRIC SPEECH SYNTHESIS USING DEEP NEURAL NETWORKS

Heiga Zen, Andrew Senior, Mike Schuster

Google

{heigazen, andrewsenior, schuster}@google.com

ABSTRACT

Conventional approaches to statistical parametric speech synthe-
sis typically use decision tree-clustered context-dependent hidden
Markov models (HMMs) to represent probability densities of speech
parameters given texts. Speech parameters are generated from the
probability densities to maximize their output probabilities, then a
speech waveform is reconstructed from the generated parameters.
This approach is reasonably effective but has a couple of limita-
tions, e.g. decision trees are inefficient to model complex context
dependencies. This paper examines an alternative scheme that is
based on a deep neural network (DNN). The relationship between
input texts and their acoustic realizations is modeled by a DNN. The
use of the DNN can address some limitations of the conventional
approach. Experimental results show that the DNN-based systems
outperformed the HMM-based systems with similar numbers of
parameters.
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Tacotron 2

NATURAL TTS SYNTHESIS BY CONDITIONING WAVENET ON MEL SPECTROGRAM
PREDICTIONS

Jonathan Shen', Ruoming Pang', Ron J. Weiss', Mike Schuster', Navdeep Jaitly', Zongheng Yang*?,
Zhifeng Chen', Yu Zhang', Yuxuan Wang', RJ Skerry-Ryan', Rif A. Saurous', Yannis Agiomyrgiannakis',
and Yonghui Wu!

'Google, Inc., ?University of California, Berkeley,
{jonathanasdf, rpang, yonghui}@google.com

ABSTRACT

This paper describes Tacotron 2, a neural network architecture for
speech synthesis directly from text. The system is composed of a
recurrent sequence-to-sequence feature prediction network that maps
character embeddings to mel-scale spectrograms, followed by a mod-
ified WaveNet model acting as a vocoder to synthesize time-domain
waveforms from those spectrograms. Our model achieves a mean
opinion score (MOS) of 4.53 comparable to a MOS of 4.58 for profes-
sionally recorded speech. To validate our design choices, we present
ablation studies of key components of our system and evaluate the im-
pact of using mel spectrograms as the conditioning input to WaveNet
instead of linguistic, duration, and Fp features. We further show that
using this compact acoustic intermediate representation allows for a
significant reduction in the size of the WaveNet architecture.
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Acoustic model

Tacotron 2
System MOS
Parametric 3.492 £ 0.096
Tacotron (Griffin-Lim)  4.001 + 0.087
Concatenative 4.166 + 0.091
WaveNet (Linguistic) 4.341 £+ 0.051
Ground truth 4.582 + 0.053

Tacotron 2 (this paper) 4.526 & 0.066

End-to-end acoustic model + WaveNet vocoder
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https://ai.gooqgleblog.com/2017/12/tacotron-2-generating-human-like-speech.html
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Non-autoregressive TTS: FastSpeech 2

FASTSPEECH 2: FAST ANI
END TEXT TO SPEECH

HIGH-QUALITY [END-TO-

Yi Ren!; Chenxu Hu!; Xu Tan?, Tao Qin?, Sheng Zhao®, Zhou Zhao!] Tie-Yan Liu?

1Zhejiang University
{rayeren, chenxuhu, zhaozhou}@zju.edu.cn

2Microsoft Research Asia
{xuta, taogin, tyliu}@microsoft.com

3Microsoft Azure Speech
Sheng.Zhaolmicrosoft.com

ABSTRACT

Non-autoregressive text to speech (TTS) models such as FastSpeech (Ren et al.,
2019) can synthesize speech significantly faster than previous autoregressive mod-
els with comparable quality. The training of FastSpeech model relies on an au-
toregressive teacher model for duration prediction (to provide more information
as input) and knowledge distillation (to simplify the data distribution in out-
put), which can ease the one-to-many mapping problem (i.e., multiple speech
variations correspond to the same text) in TTS. However, FastSpeech has sev-
eral disadvantages: 1) the teacher-student distillation pipeline is complicated and
time-consuming, 2) the duration extracted from the teacher model is not accu-
rate enough, and the target mel-spectrograms distilled from teacher model suf-

voice quality. In this paper, we propose FastSpeech 2, which addresses the is-
sues in FastSpeech and better solves the one-to-many mapping problem in TTS
by 1) directly training the model with ground-truth target instead of the simpli-
fied output from teacher, and 2) introducing more variation information of speech
(e.g., pitch, energy and more accurate duration) as conditional inputs. Specifi-

take them as conditional inputs in training and use predicted values in inference.
We further design FastSpeech 2s, which is the first attempt to directly generate
speech waveform from text in parallel, enjoying the benefit of fully end-to-end
inference. Experimental results show that 1) FastSpeech 2 achieves a 3x train-
ing speed-up over FastSpeech, and FastSpeech 2s enjoys even faster inference
speed; 2) FastSpeech 2 and 2s outperform FastSpeech in voice quality, and Fast-
Speech 2 can even surpass autoregressive models. Audio samples are available at
https://speechresearch.github.io/fastspeech2/.
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Non-autoregressive TTS: FastSpeech 2
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Non-autoregressive TTS: FastSpeech 2
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Non-autoregressive TTS: FastSpeech 2

Method | MOS

GT 4.30 £ 0.07

GT (Mel + PWG) 3.92 +0.08

Tacotron 2 (Shen et al., 2018) (Mel + PWG) 3.70 + 0.08

Transformer TTS (Li et al., 2019) (Mel + PWG) | 3.72 £ 0.07 Method | Training Time (h) | Inference Speed (RTF)  Inference Speedup
FastSpeech (Ren et al., 2019) (Mel + PWG 3.68 + 0.09 /

Tmmﬁ)rmer TTS (Lr. etal., 2019)

FastSpeech 2 (Mel + PWG) 3.83 £ 0.08

https://[speechresearch.qgithub.io/fastspeech?2/
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#1: Flow-based acoustic model

Abstract
Glow-TTS: A Generative Flow for Text-to-Speech via

Monotonic Alignment Search Recently, text-to-speech (TTS) models such as FastSpeech and ParaNet have been

proposed to generate mel-spectrograms from text in parallel. Despite the advantage,

the parallel TTS models cannot be trained without guidance from autoregressive
TTS models as their external aligners. In this work, we propose Glow-TTS, a
flow-based generative model for parallel TTS that does not require any external

Jaehyeon Kim Sungwon Kim ; ot ; : g
Kakao Enterprise Data Science & Al Lab. aligner. By combining the properties of flows and dynamic programming, the
jay.xyzCkakaoenterprise.com Seoul National University proposed model searches for the most probable monotonic alignment between text

ksw0306@snu.ac.k R 2
= sn-ac. and the latent representation of speech on its own. We demonstrate that enforc-

. . ing hard monotonic alignments enables robust TTS, which generalizes to long
Jungil Kong Sungroh Yoon % : } :
Kakao Enterprise Data Science & Al Lab. utterances, and employing generative flows enables fast, diverse, and controllable
henry . k@kakaoenterprise.com Seoul National University speech synthesis. Glow-TTS obtains an order-of-magnitude speed-up over the
sryoon@snu.ac.kr autoregressive model, Tacotron 2, at synthesis with comparable speech quality. We
further show that our model can be easily extended to a multi-speaker setting.

https://jaywalnut310.qgithub.io/glow-tts-demo/index.html
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#2: Diffusion-based acoustic model

Abstract

Recently, denoising diffusion probabilistic mod-

els and generative score matching have shown

Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech high potential in modelling complex data distri-
butions while stochastic calculus has provided

a unified point of view on these techniques al-
lowing for flexible inference schemes. In this
Vadim Popov”' Ivan Vovk “!? Vladimir Gogoryan'? Tasnima Sadekova' Mikhail Kudinov' paper we introduce Grad-TTS, a novel text-to-

speech model with score-based decoder produc-
mbution "Huawei Noah’s Ark Lab, Moscow, Rus- ing‘ mclfSp‘ectrOgramS by graduall-y transzrming
sia 2lgigher School of Economics, Mo:;cow, Rus:;ia. éone’spoﬁ- flmse predicted by encoder %md a_llgned with text
dence to: Vadim Popov <vadim.popov@huawei.com>>, Ivan Vovk Input by means of Monotonic Alignment Search.
<vovk.ivan@huawei.com>. The framework of stochastic differential equations
helps us to generalize conventional diffusion prob-
abilistic models to the case of reconstructing data
from noise with different parameters and allows
to make this reconstruction flexible by explicitly
controlling trade-off between sound quality and
inference speed. Subjective human evaluation
shows that Grad-TTS is competitive with state-
of-the-art text-to-speech approaches in terms of
Mean Opinion Score.

https://grad-tts.qgithub.io/
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3. Vocoder: From acoustic parameters to speech
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How do we produce speech?

Recall: Speech waveform

Formant frequency

Magnitude (dB)

Frequency (Hz)
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How do we produce speech?

Speech production model

https://www.youtube.com/watch?v=X JvfZiGEek
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* Unvoiced sound : noisy
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Vocoder = Voice + Coder
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speech signals acoustic parameters
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What is the main model?

WaveRNN based on the RNN model
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N. Kalchbrenner, et al., “Efficient neural audio synthesis,” arXiv:1802.08435, 2018.
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speech signals acoustic parameters
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What is the main model?

WaveGlow based on the Flow model
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R. Prenger, et al., "WaveGlow: A flow-based generative network for speech synthesis," in Proc. ICASSP, 2019.
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speech signals acoustic parameters
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What is the main model?

DiffWave based on the Diffusion model

= Bi-directional Dilated Conv
(dilation = 27)

= Broadcast over length
= Element-wise addition

= Element-wise multiplication

Z. Kong, et al., "Diffwave: A versatile diffusion model for audio synthesis," in Proc. ICLR, 2021.
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WaveNet synthesis
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What is the main model?

WaveNet based on the CNN model

Output
Diation=8

>.0.0.0.0.0.0.0.0.0.0.0.0.00,
.9.9.9.9 9.0

. Daaton=4

Hidden Layer
Duation =2

Hidden Layer
Daation =1

Input

p(x|h) = [T{=; p(x¢|xy, -+, X¢—1, h)
z = tanh(Wy e * X + V} , h) @8(Wy . * x +V} .h)

A. Van Den Oord, et al., “WaveNet: A generative model for raw audio,” CoRR abs/1609.03499, 2016.
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WaveNet synthesis

Acoustic
Parameters

vt

What is the main model?

WaveNet based on the CNN model

Estimating the current sample from the previous samples
We define this method as autoregressive vocoding model

WaveNet generates high-quality synthetic speech
However, it takes about 5 minutes to generate 1 sec audio

A. Van Den Oord, et al., “WaveNet: A generative model for raw audio,” CoRR abs/1609.03499, 2016.
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Parallel WaveNet synthesis

Linguistic features -----=

WaveNet Teacher Teacher Qutput
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One of the alternative method to address WaveNet’s slow inference speed is
the non-autoregressive Parallel WaveNet

A.van den Oord, et al., “Parallel WaveNet: Fast high-fidelity speech synthesis,” in Proc. ICML, 2018.
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Parallel WaveNet synthesis

WaveNet Teacher (o

Linguistic features

WaveNet Student /

Linguistic features

Teacher Cutput
P(z;]z;)

Generated Samples
x; = g(2i|2<i)

Student Output
P{laln‘{lj

Input noise

Non-autoregressive Parallel WaveNet (=student) is trained to learn
the distribution of the autoregressive WaveNet (=teachure)

A.van den Oord, et al., “Parallel WaveNet: Fast high-fidelity speech synthesis,” in Proc. ICML, 2018.
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Parallel WaveNet synthesis
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Non-autoregressive Parallel WaveNet doesn’t require the previous samples
Its inference speed in unlimited
(it takes about 0.02 sec to generate 1 sec audio)

A.van den Oord, et al., “Parallel WaveNet: Fast high-fidelity speech synthesis,” in Proc. ICML, 2018.



Neural vocoder

Parallel WaveNet synthesis
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Linguistic features -----=
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There remain problems in the difficult training method...

A.van den Oord, et al., “Parallel WaveNet: Fast high-fidelity speech synthesis,” in Proc. ICML, 2018.
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Parallel WaveNet synthesis

PARALLEL WAVEGAN: A FAST WAVEFORM GENERATION MODEL BASED ON
GENERATIVE ADVERSARIAL NETWORKS WITH MULTI-RESOLUTION SPECTROGRAM

ABSTRACT

We propose Parallel WaveGAN, a distillation-free, fast, and small-
footprint waveform generation method using a generative adver-
sarial network. In the proposed method, a non-autoregressive
WaveNet is trained by jointly optimizing multi-resolution spectro-
gram and adversarial loss functions, which can effectively capture
the time-frequency distribution of the realistic speech waveform.
As our method does not require density distillation used in the
conventional teacher-student framework, the entire model can be
easily trained. Furthermore, our model is able to generate high-
fidelity speech even with its compact architecture. In particular,
the proposed Parallel WaveGAN has only 1.44 M parameters and
can generate 24 kHz speech waveform 28.68 times faster than real-
time on a single GPU environment. Perceptual listening test results
verify that our proposed method achieves 4.16 mean opinion score
within a Transformer-based text-to-speech framework, which is
comparative to the best distillation-based Parallel WaveNet sys-
tem.




Neural vocoder: Parallel WaveGAN

1. Removed the teacher-student distillation process
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R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.



Neural vocoder: Parallel WaveGAN

1. Removed the teacher-student distillation process

- Entire model can be “easily” trained
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R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.



Neural vocoder: Parallel WaveGAN

1. Removed the teacher-student distillation process
Improved synthetic quality by using the adversarial training method
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R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.



Neural vocoder: Parallel WaveGAN

1. Removed the teacher-student distillation process

Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss
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ICASSP, 2020, pp. 6194-6198.



Neural vocoder: Parallel WaveGAN

1. Removed the teacher-student distillation process
2. Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss

@ ® STFT (short-time Fourier transform)?

Time-frequency representation of speech signal

A

Frequency

R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.

ICASSP, 2020, pp. 6194-6198.



Neural vocoder: Parallel WaveGAN

1. Removed the teacher-student distillation process
2. Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss

STFT is calculated in different T/F resolutions

FFT size / window size / shift
512 / 240 / 50 1024 / 600 / 120 2048 / 1200 / 240
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R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.



Neural vocoder: Parallel WaveGAN

1. Removed the teacher-student distillation process
2. Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss

STFT is calculated in different T/F resolutions

There are two loss functions

N
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R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.



Neural vocoder: Parallel WaveGAN

1. Removed the teacher-student distillation process
2. Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss

STFT is calculated in different T/F resolutions
There are two loss functions

One penalizes large energy components
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R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.



Neural vocoder: Parallel WaveGAN

1. Removed the teacher-student distillation process

2. Improved synthetic quality by using the adversarial training method
3. Further improved its quality by introducing the multi-resolution STFT loss

STFT is calculated in different T/F resolutions
There are two loss functions
One penalizes large energy components

The other penalizes small energy components

| log|STFT(x)| — log |STFT(X)||
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R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.
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Training method

| (1)
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update > (1st) \ \::r 'teg S
\if “‘ ol ala
i A
Random noise }. ~ L(z) \ . : LG
z Generator | X S| STFTloss [s ___>®_a_ll’f
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| STFTloss | /
> Mth (M
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Natural speech x | Discriminator loss
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R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.

ICASSP, 2020, pp. 6194-6198.
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Training method

Parameter STFT loss
update (1st) . . .
v Table 1: The details of the multi-resolution STFT loss. A
Random noise ¢ Hanning window was applied before the FFT process.
2 R
) Z Generator STFTloss [} STFT loss FFTsize Window size Frame shift
Acoustic feature Parallel (2nd )
i - Y 1024 600(25ms) 120 (5 ms)

: L 2048 1200 (50 ms) 240 (10 ms)
¥ 512 240 (10 ms) 50 (== 2 ms)

STFT loss

(M™)

3l Conv-based |ReallFake| Adversarial o
Natural speech x | Discriminator I loss 1__.
adv

1 LD

Parameter 5| Discriminator > Gradients
update loss w.rt.D

R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in Proc.
ICASSP, 2020, pp. 6194-6198.
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Parallel WaveNet synthesis

PARALLEL WAVEGAN: A FAST WAVEFORM GENERATION MODEL BASED ON
GENERATIVE ADVERSARIAL NETWORKS WITH MULTI-RESOLUTION SPECTROGRAM

ABSTRACT

We propose Parallel WaveGAN, a distillation-free, fast, and small-
footprint waveform generation method using a generative adver-
sarial network. In the proposed method, a non-autoregressive
WaveNet is trained by jointly optimizing multi-resolution spectro-
gram and adversarial loss functions, which can effectively capture
the time-frequency distribution of the realistic speech waveform.
As our method does not require density distillation used in the
conventional teacher-student framework, the entire model can be
easily trained. Furthermore, our model 1s able to generate high-
fidelity speech even with its compact architecture. In particular,
the proposed Parallel WaveGAN has only 1.44 M parameters and
can generate 24 kHz speech waveform 28.68 times faster than real-
time on a single GPU environment. Perceptual listening test results
verify that our proposed method achieves 4.16 mean opinion score
within a Transformer-based text-to-speech framework, which is
comparative to the best distillation-based Parallel WaveNet sys-
tem.




Neural vocoder: Parallel WaveGAN

R. Yamamoto, et al., “Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,”

Evaluation results

Table 2: The inference speed and the MOS results with 95% confidence intervals: Acoustic features extracted from the recorded
speech signal were used to compose the input auxiliary features. The evaluation was conducted on a server with a single
NVIDIA Tesla V100 GPU. Note that the inference speed k means that the system was able to generate waveforms k times
faster than real-time.

System Model KLD-based STFT Adversarial Number Inference
index ode distillation loss loss layers i speed
System 1 WaveNet - - - 24 : 0.32x1072
System 2 ClariNet Yes LY - 60 . 14.62
System 3 ClariNet Yes L+ L + L® - 60 . 14.62
System 4 ClariNet Yes LY+ 1?4 ¥ Yes 60 . 14.62
System 5 Parallel WaveGAN - v Yes 30 . 28.68
System 6  Parallel WaveGAN - JASURY ACNEY IS Yes 30 . 28.68

System 7 Recording - - - -

Table 3: Training time comparison: All the experiments were ~ Table 4: MOS results with 95% confidence intervals: Acous-
conducted on a server with two NVIDIA Tesla V100 GPUs.  tic features generated from the Transformer TTS model were
Each vocoder model corresponds to System 1, 3, 4, and 6  used to compose the input auxiliary features.

described in Table 2, respectively. Note that the times for

ClariNets include the training time eNet. Model MOS
Transformer + WaveNet 3.3340.11
Model Training time (days) Transformer + ClariNet 4.00+0.10
WaveNet 74 Transformer + ClariNet-GAN 4.1440.10
ClariNet 127 Transformer + Parallel WaveGAN ( 4.16+0.09
ClariNet-GAN 13.5 Recording 4.46+0.08
Parallel WaveGAN (ours) 2.8

ICASSP, 2020, pp. 6194-6198.
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Neural vocoder
SloigAICt
#1: HiFi-GAN

Abstract

HiFi-GAN: Generative Adversarial Networks for , , .
Several recent work on speech synthesis have employed generative adversarial

Efficient and High Fidelity Speech Synthesis networks (GANSs) to produce raw waveforms. Although such methods improve the
sampling efficiency and memory usage, their sample quality has not yet reached

that of autoregressive and flow-based generative models. In this work, we propose
_ _ HiFi-GAN, which achieves both efficient and high-fidelity speech synthesis. As
Jungil Kong Jaehyeon Kim speech audio consists of sinusoidal signals with various periods, we demonstrate

Kakao Enterprise Kakao Enterprise . . .. . . .
henry . k@kakaoenterprise. com jay . xyz@kakaocenterprise. com that modeling periodic patterns of an audio is crucial for enhancing sample quality.
A subjective human evaluation (mean opinion score, MOS) of a single speaker
Jaekyoung Bae dataset indicates that our proposed method demonstrates similarity to human quality
Kakao Enterprise while generating 22.05 kHz high-fidelity audio 167.9 times faster than real-time
stornm.bCkakaoenterprise. com on a single V100 GPU. We further show the generality of HiFi-GAN to the mel-

spectrogram inversion of unseen speakers and end-to-end speech synthesis. Finally,
a small footprint version of HiFi-GAN generates samples 13.4 times faster than
real-time on CPU with comparable quality to an autoregressive counterpart.

https://github.com/jik876/hifi-gan
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#2: BigVGAN

BIGVGAN: A UNIVERSAL NEURAL VOCODER WITH
LARGE-SCALE TRAINING

Wei Ping 2

Boris Ginsburg® Bryan Catanzaro

Sang-gil Lee!*

2 Sungroh Yoon'3f

! Data Science & Al Lab, Seoul National University (SNU)
2 NVIDIA
3 AIIS, ASRI, INMC, ISRC, NSI, and Interdisciplinary Program in Al, SNU

tkdrlf9202@snu.ac.kr wping@nvidia.com
bginsburg@nvidia.com bcatanzaro@nvidia.com sryoon@snu.ac.kr

ABSTRACT

Despite recent progress in generative adversarial network (GAN)-based vocoders,
where the model generates raw waveform conditioned on acoustic features, it is
challenging to synthesize high-fidelity audio for numerous speakers across various
recording environments. In this work, we present BigVGAN, a universal vocoder
that generalizes well for various out-of-distribution scenarios without fine-tuning.
We introduce periodic activation function and anti-aliased representation into the
GAN generator, which brings the desired inductive bias for audio synthesis and
significantly improves audio quality. In addition, we train our GAN vocoder at
the largest scale up to 112M parameters, which is unprecedented in the literature.
We identify and address the failure modes in large-scale GAN training for audio,
while maintaining high-fidelity output without over-regularization. Our BigVGAN,
trained only on clean speech (LibriTTS), achieves the state-of-the-art performance
for various zero-shot (out-of-distribution) conditions, including unseen speakers,
languages, recording environments, singing voices, music, and instrumental audio. '
We release our code and model at: https://github.com/NVIDIA/BigVGAN.

https://github.com/NVIDIA/BigVGAN
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Fully end-to-end speech synthesis

VITS

Conditional Variational Autoencoder with Adversarial Learning for

End-to-End Text-to-Speech

Jaehyeon Kim ' Jungil Kong' Juhee Son'?
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'Kakao Enterprise, Seongnam-si, Gyeonggi-do, Repub-
lic of Korea “School of Computing, KAIST, Daejeon, Re-
public of Korea. Correspondence to: Jaehyeon Kim
<jay.xyz@kakaoenterprise.com>.

Abstract

Several recent end-to-end text-to-speech (TTS)
models enabling single-stage training and parallel
sampling have been proposed, but their sample
quality does not match that of two-stage TTS sys-
tems. In this work, we present a parallel end-
to-end TTS method that generates more natu-
ral sounding audio than current two-stage mod-
els. Our method adopts variational inference aug-
mented with normalizing flows and an adversarial
training process, which improves the expressive
power of generative modeling. We also propose a
stochastic duration predictor to synthesize speech
with diverse rhythms from input text. With the
uncertainty modeling over latent variables and
the stochastic duration predictor, our method ex-
presses the natural one-to-many relationship in
which a text input can be spoken in multiple ways
with different pitches and rhythms. A subjective
human evaluation (mean opinion score, or MOS)
on the LJ Speech, a single speaker dataset, shows
that our method outperforms the best publicly
available TTS systems and achieves a MOS com-
parable to ground truth.
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Fully end-to-end speech synthesis
VITS
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VITS
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VITS

Prior encoding
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VITS
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Synthesized speech
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Fully end-to-end speech synthesis
VITS

Table 1. Comparison of evaluated MOS with 95% confidence in-

tervals on the LJ Speech dataset. Table 3. Comparison of evaluated MOS with 95% confidence in-

tervals on the VCTK dataset.

Model MOS (CI)

Model MOS (CI)

Tacotron 2 + HiFi-GAN 3.77 (£0.08)

Tacotron 2 + HiFi-GAN
Tacotron 2 + HiFi-GAN (Fine-tuned)

Tacotron 2 + HiFi-GAN (Fine-tuned) 4.25 (£+0.07)

H1l1- . .U
- - ] A0 A
Glow-TTS + HiFi-GAN (Fine-tuned)  4.32 (+0.07) Glow-TTS + HiFi-GAN (Fine-tuned)  3.82 (+0.07)
VITS (DDP) 4.39 (+0.06) VITS 4.38 (+0.06)
VITS 4.43 (0.06)

1. Fine-tuning (w/ generated parameters) 20| &

https://github.com/jaywalnut310/vits
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Fully end-to-end speech synthesis
VITS

Table 1. Comparison of evaluated MOS with 95% confidence in-

tervals on the LJ Speech dataset. Table 3. Comparison of evaluated MOS with 95% confidence in-

tervals on the VCTK dataset.

Model MOS (CI) Model MOS (CI)
Ground Truth 4.46 (+0.06) Ground Truth 4.38 (£0.07)
Tacotron 2 + HiFi-GAN 3.77 (£0.08) Tacotron 2 + HiFi-GAN 3.14 (£0.09)
Tacotron 2 + HiFi-GAN (Fine-tuned) 4.25 (4+0.07) Tacotron 2 + HiFi-GAN (Fine-tuned)  3.19 (+0.09)
Glow-TTS + HiFi-GAN 4.14 (£0.07) Glow-TTS + HiFi-GAN 3.76 (+0.07)
111 A TS 11 2 1L & (] (]

Glow-TTS + HiFi-GAN (Fine-tuned) 4.32 (£0.07)
i [] AWAT=S

4.38 (+£0.06)

4.43 (+0.06)

2. 2l fully end-to-end 89| (vITS) 50| O £2

https://github.com/jaywalnut310/vits
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